DEVELOPMENT OF A DISTRIBUTED AUTOMATED TESTING
FRAMEWORK FOR EMBEDDED BASEBAND PLATFORMS

CAMELIA - ALEXANDRA GROZA

Computer Science
& Engineering
Department

Bachelor Thesis

Computer Science and Engineering Department
Automatic Control and Computing Faculty
University POLITEHNICA of Bucharest

July 2014

Camelia - Alexandra Groza: Development of a Distributed Automated
Testing Framework for Embedded Baseband Platforms, Bachelor Thesis, ©
July 2014

SUPERVISORS:
Ing. Cristian Macdrdscu
S.1. dr. ing. Adrian-Rdzvan Deaconescu

LOCATION:
Bucharest

TIME FRAME:
July 2014

ABSTRACT

All software users expect the applications they interact with to per-
form in a certain way and to complete certain tasks. In every branch
of the Software Development field, extra effort is put into testing the
created projects in order to assure that the users will be satisfied with
the end results.

Various applications and tools come in the aid of the software de-
velopers by automating the entire testing process. Unfortunately, due
to the high diversity of the field, no such tool is perfect for all software
projects.

In this paper, we present a distributed automated tool aimed at
helping the developers of baseband embedded projects test their prod-
ucts. We describe what the development process consists of, how the
tool is designed and how the users interact with it.

iii

CONTENTS

INTRODUCTION 1
2 TOOLS OF TRADE 3

2.1 AccuRev® 3

2.2 CodeWarrior® 4
2.2.1 Project Organization 4
2.2.2 Automation 6
2.2.3 Debugger Shell 7

2.3 Hardware Environment 8

2.3.1 The Freescale B4860 QDS® 8
2.3.2 The Networking Infrastructure

3 STATE OF THE ART 13
3.1 Continuous Integration 13
3.2 Development Process 13
4 ATF 1.0 17

4.1 Design 17
4.1.1 The Job Generator 17
4.1.2 The Job Worker 19
4.2 Limitations 20
5 ATF 2.0 IMPLEMENTATION 23
5.1 Design 23
5.2 The Session Configuration File 24
5.3 Workflow 27
5.3.1 The Client 27
5.3.2 The Job Generator 29
5.3.3 The Worker 30
5.3.4 The Result Aggregator 33
RESULTS 37
FUTURE WORK 39
7.1 Communicating with the Workers 39
7.2 Running a Test Session from an Archive
8 CONCLUSION 41

BIBLIOGRAPHY 43

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Basic AccuRev components and commands.
RSE GUI configuration. 5

.cproject GUI configuration. 6
CodeWarrior’s Debugger Shell. 7

B4860 Block Diagram. 9

The network infrastructure. 11

AccuRev error propagation. 13

B4860 Lte-L1 AccuRev structure. 14

ATF 1.0 design. 17

Development depot with Ghost Streams. 18

ATF 1.0 worker diagram. 20

ATF 2.0 design. 23

The Session Configuration File. 24
Job generator workflow. 29

The ATF’s database. 31

The CodeWarrior Debugger Shell wrapper. 33
Worker block diagram. 35

Time to run a test session comparison. 38

LIST OF TABLES

Table 1

vi

Time to run a test session comparison 38

LISTINGS

Listing 1 Internal RSE representation 5
Listing 2 .cproject content snippet 6

Listing 3 Configuring a project with ecd.exe 7
Listing 4 Debugger Shell commands 8
Listing 5 Lars commands 10

Listing 6 Add an on demand trigger 27
Listing 7 Add a recursive trigger 28

Listing 8 List active triggers 28

Listing 9 Remove a trigger 28

ACRONYMS

SCM Software Configuration Management
GUI Graphical User Interface

CLI Command Line Interface

CI Continuous Integration

IDE Integrated Development Environment
DSP Digital Signal Processor

MAPLE-B3 Multi-Accelerator Platform Engine Baseband 3
RSE Remote System Explorer

QDS Qonverge Development System

SoC System on a Chip

ccs CodeWarrior Connection Server

LTE Long Term Evolution

ATF Automated Testing Framework

GS Ghost Stream

SCF Session Configuration File

UE User Equipment

vii

viii ACRONYMS

DLCCH Downlink Control Channel
PDSCH Physical Downlink Shared Channel

PUSCH Physical Uplink Shared Channel

INTRODUCTION

In the Software Development field, the quality of a resulting product
is of the essence. Through comprehensive testing, product excellency
can be assured.

Software projects who follow Continuous Integration (CI) practices
require the developers to perform frequent code merges between their
branches. Naturally, before each such merge, validation tests need to
be run to assure that functionalities weren’t damaged. Thus, excessive
amounts of sometimes lengthy tests are ran every day.

Automated tools are generally used to ease the testing phase. Un-
fortunately, no such tool is perfect for all software projects. Specifi-
cally, embedded baseband projects require a certain hardware setup
that these tools aren’t familiar with.

In this paper we introduce the Automated Testing Framework (ATF),
one such distributed automated tool aimed at testing baseband projects.

We begin with describing environment in which this framework
runs. From the platforms on which the tests run, to the Software Con-
figuration Management (SCM) and Integrated Development Environment
(IDE) used, the ATF interacts with all of them in one way or another.

We then present the framework’s first version used for testing projects
with precise specifications. Briefly, it polls the SCM for various events
on which it triggers predefined test sessions. Each session contains
multiple test that can be run by the framework’s workers in paral-
lel. At each session’s end, a test report is sent to the developer who
triggered the tests. Due to its limitations, a new version had to be
implemented.

The ATF 2.0 keeps its predecessor’s general design and workflow
and adds some of its own components. We describe these new fea-
tures starting with the Session Configuration File (SCF), the mean
through which the developers are free to design their test sessions.
Another important component is the client through which the users
can interact with the framework.

By the end of this paper we list a couple of new features that can
be implemented and outline the framework’s performances.

TOOLS OF TRADE

Most software engineering teams require an extended list of tools to
help them throughout the entire development process. From source
code editing, to version control, to debugging, these applications be-
come essential when working on comprehensive projects and, more
importantly, in large teams.

Baseband engineers are by no means an exception when it comes
to such instruments. In the rest of this chapter we present some of
their most essential tools.

2.1 ACCUREV®

In order for a team of software engineers to be most efficient, its
members need to be able to work simultaneously on the same project.
As the project grows, so does the size of its development team and,
most often than not, team members will be scattered geographically,
thus increasing the difficulty of concurrent development.

When, inevitably, such issues arise, a SCM applications can be used.
These tools, among other features, maintain a history of modifications
made to shared files by each team member. Hence, the project can
be easily reverted to a previous state if an adjustment needs to be
undone and the persons responsible for any change can be tracked.

AccuRev® is a SCM application used by baseband engineers to con-
trol the concurrent development process. It allows developers to work
privately, share code, develop code serially, lock files if necessary, and
protect a code base. Its basic components are: *

* Workspace - the private local development area of each user.

e Stream - shared configurations of related elements which change
over time; code can be promoted into or inherited from streams.

* Depot - the main repository on a server for all related source
code.

* Snapshot - static (protected) stream that cannot be moved, re-
named, or altered.

Figure 1 portrays the fundamental AccuRev components and com-
mands. Streams and workspaces are organized in a tree-like manner
with the former as leaves. Workspaces stand behind streams with
which they synchronize their contents. A classic scenario is one in

1 AccuRev® Quick Reference

4 TOOLS OF TRADE

which multiple developers each have a workspace behind the same

The root stream stream, stream used for collaboratively developing the same feature.
usually contains the
atest functional ST o
code and is called >
: >
Integration stream.

2 Workspace2_user2

st
v vy

2 Stream2_QA I— 2] Workspace3_userl

»>

2| Workspaced_user2

Figure 1: Basic AccuRev components and commands.?

When changes from a local workspace need to be integrated with
others” work, they are promoted to the workspace’s backing stream.
At this point they belong to he stream’s default group 3 from where
they can be promoted again to the stream’s parent and so on until
the root stream is reached. If two streams want to promote versions
of the same file to a common backing stream, a merge is required be-
tween the two file versions. If a users wants to retrieve in his own
workspace the changes made by one of his colleagues, he has to up-
date his workspace, thus fetching all changes from the backing stream.
Changes propagate downward automatically through streams. This
means that, opposed to workspaces, all child streams will immedi-
ately receive the changes once a promotion to a parent stream occurs.

Beside a Graphical User Interface (GUI) used by most developers,
AccuRev also has an equivalent and elaborate Command Line Interface
(CLI) useful in automated contexts.

2.2 CODEWARRIOR®

The CodeWarrior® IDE provides an efficient and flexible software-
development tool suite. It is used for the creation of projects that
CodeWarrior is run on a number of embedded systems. 4
based on the Open All CodeWarrior versions used by baseband engineers contain, among
Source Eclipse IDE. - yther features, a wide array of tools developed especially for the Star-
Core Digital Signal Processor (DSP) and the Multi-Accelerator Platform
Engine Baseband 3 (MAPLE-B3) Hardware Accelerator.

2.2.1 Project Organization

Following the Eclipse’s approach to organizing resources, each Code-
Warrior project contains, aside from its source code, a set of config-
uration files through which it passes certain settings to the IDE. We
will describe two of these file types:

2 AccuRev Quick Reference
3 files that differ from their version in the backing stream
4 CodeWarrior Common Features Guide

2.2 CODEWARRIOR®

1. A set of XML files used for configuring the Remote System
Explorer (RSE) - the connection to the simulator / hardware de-

vice on which the project will run.

In Figure 2 we show how

these options can be set through the IDE’s GUI.

Hardware or Simulator Connection

Parent profile: Fsr-wxp32-116

Hame: | B4860_0DS5

Descripkion: |

Template; |None

LI Apply Defaults

Target: I B4860 QDS System j Edit. .. | Mew, .. |

Conneckion type: ICodeWamor TAP

Connection | Advanced I

- Codetarrior TAP

Hardware connection: IEthernet

Haostname)1P: | 192,168,50,208

I™ | serial number: |

[~ JTAG settings

ITAG clock speed (kHz): I 12500

[T0CS server
" Automatic launch

Server port uriber: [41475

[T 5 executabile: |

{* Manual launch

Server hostname/IP: | 192,168,50,254

Server port number: |414DB
¥ Connect server ko TAP

|

Figure 2: RSE GUI configuration.

In Listing 1 we see how some of these settings are represented

in the XML RSE configuration files.

Listing 1: Internal RSE representation

<property key="propertySet.[cw.dbg

<property key="propertySet.[cw.dbg
value="192.168.50.208"/>
<property key="propertySet.[cw.dbg
chainSpeedTCK" value="12500"/>
<property key="propertySet.[cw.dbg
value="192.168.50.254"/>
<property key="propertySet.[cw.dbg

.ct.cwtap.jtag].

debugConnection" value="Ethernet"/>

.ct.cwtap.jtag].hostname"
.ct.tap.jtag].
.ct.ccs].CCSIPAddress"

.ct.ccs].

remoteServerPortNumber" value="41408"/>

6

TOOLS OF TRADE

2. .cproject, the main XML project configuration file used for stor-
ing information regarding each available build target. Some of
the informations stored in such files are various build flags, lists
of defined and undefined preprocessor macros and names of re-
sulting binaries. Similar to the RSE settings, these configurations
can be set through the IDE’s GUI, as we can seen in Figure 3.

Defined Preprocessor Macros & % &F 'ﬁ| §|

CW_PROFILING
FasL_PRIMTF_EMABLED

Figure 3: .cproject GUI configuration.

Again, in Listing 2 we can see how some these settings are por-
trayed in the .cproject file.

Listing 2: .cproject content snippet

<option id="..." name="Defined Preprocessor Macros"
superClass="..." valueType="...">
<listOptionValue ... value="CW_PROFILING"/>
<listOptionValue ... value="FSL_PRINTF_ENABLED"/>
</option>

Furthermore, when opening and working with a project, the Code-
Warrior IDE needs a workspace in which to store information regarding
the current session. The workspace contains a .metadata directory in
which IDE settings are kept along with configurations of the currently
opened projects. Rebuilding the project before launching it, display-
ing certain pop-up messages and using cached RSE settings are just
part of the metadata kept in the IDE’s workspace.

2.2.2 Automation

Aside from the GUI, the CodeWarrior IDE also provides a command-
line tool, ecd.exe, which can be used to configure and build projects.

2.2 CODEWARRIOR® 7

For building a project and loading it into a workspace, a command
as the following can be used.

> ecd.exe -build -data workspace_path -project project_path -
config target

As for managing the RSE system settings or the launch configura-
tions, the -setOptions and -getOptions flags can be used. The -getOptions
flag retrieves the project’s current settings in a key-value format. In a
similar manner, the -setOptions flag can be used to update the value
of a provided option key. In Listing 3 we exemplify how we can ob-
tain the list of defined preprocessor macros for the B4860_QDS_rev2
configuration of a given project and how the -Wall compile flag can
be activated for the same project.

Listing 3: Configuring a project with ecd.exe

> ecd.exe -getOptions -project project_path -config B4860_QDS_rev
2 -option scc.preprocessor.definedMacros
configuration(B4860_QDS_rev2):
scc.preprocessor.definedMacros = FSL_PRINTF_ENABLED
memcpy=memcpy_SBL1_opt
ICommand.Success!

> ecd.exe -setOptions -project project_path -config B4860_QDS_rev
2 -set scc.compiler.reportAllWarnings scc.compiler.
reportAllWarnings

ICommand.Success!

2.2.3 Debugger Shell

The debugger is another one of CodeWarrior’s features that supports
a command line interface. Various debug commands can be executed
through a TCL debugger shell embedded in the IDE, as seen in Fig-
ure 4.

1% Debugger shell 52]
3xhelp
======================= (Cgmmand List ========s==============
about shout display wer=sion information
alias al create, remove or list a commwand alias
bp b set, remove or list breakpoint (s)
ca:defanlt o wview or set the default cache id
ca: ienable = wiew or set the cache enable state
ca::flush b flush the cache
caltinval i invalidate the cache
ca::lock 1 wview or set the cache lock state
caishow = display the cache architecture and avallsble cache ids
caln::flush b flush the cache line
caln: iget o display the cache lines

page 1 of 8 {press Space, End, or Esc)

Figure 4: CodeWarrior’s Debugger Shell.

TOOLS OF TRADE

In Listing 4 are some of the basic Debugger Shell’s commands used
by baseband engineers that are unique to CodeWarrior.

Listing 4: Debugger Shell commands

log log Commands and/or Session to file
debug launch a debug session

bp set, remove or list breakpoint(s)

go start a thread

kill close the specified debug session(s)

The entire debug process can be easily automated by passing a TCL
script to the IDE when calling it. After executing the following com-
mand, a new instance of CodeWarrior will open and start running
debug_script.tcl in its Debugger Shell>.

> cwide.exe -clean -vmargsplus -Dcw.script=debug_script.tcl
-data workspace_path

2.3 HARDWARE ENVIRONMENT

The most important tools used by the baseband engineers are the
hardware boards on which they run their code. These boards are
designed for multi-standard wireless base stations and are used by
different clients from the wireless telecommunications field.

In the following subsections we will present the architecture of such
a board (the Fresscale B4860 QDS®), the interface between the Code-
Warrior IDE and the hardware equipment, the networking infrastruc-
ture and the necessity for a board management tool.

2.3.1 The Freescale B4860 QDS®

Freescale develops a pool of QorIQ Qonverege platforms which com-
bine Power Architecture cores with StarCore DSPs for packet and base-
band processing, security and more.

The B4860 Qonverge Development System (QDS) is one such flexi-
ble platform that supports the B4860 baseband System on a Chip (SoC)
device, providing a complete application development environment.
The board is intended for macrocell base stations in wireless infras-
tructures as well as aerospace and defense applications.

The B4860 SoC, described in Figure 5, contains °:

¢ Four dual-threaded e6500 cores built on Power Architecture
technology up to 1.8 GHz with AltiVec 128-bit SIMD engine

5 The project that will be debugged needs to be loaded in the used workspace before
calling the IDE. This is easily achieved by the ecd.exe tool when building the project
beforehand (see Section 2.2.2).

6 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=B4860

2.3 HARDWARE ENVIRONMENT 9

* Six SC3900FP Fixed/Floating-point DSP cores built on StarCore
technology up to 1.2 GHz

* MAPLE-B3 baseband acceleration processing engines for LTE, LTE-
Advanced and WCDMA (HSPA /HSPA+)

| QorlQ Qonverge B4860 Block Diagram

¥ ? L =4
& o
H%%EE

= B
3
E

i

[Core Complex (CPU, FVR, L1 and Cache) [Basic Peripherals and Interconnect
[Accelerators and Memory Control [I] Networking Elements

Figure 5: B4860 Block Diagram.”

System debugging is enabled on the B4860 QDS platforms by the
CodeWarrior TAP which connects the board’s standard debug port
(JTAG) to a developer’s workstation via Ethernet. The CodeWarrior
tools communicate with the TAP run controllers through a CodeWarrior
Connection Server (CCS) software module (CCS processes run on the
boards awaiting connections from the IDE).

2.3.2 The Networking Infrastructure

Due to their complex architecture, boards such as the B4860 QDs
are fairly expensive. Thus, in teams of 10 - 15 engineers, the bud-
get does not permit for each developer to have his/her own platform,
on his/her desk, to work on. In order for everyone to be able to de-
bug their projects on such platforms, all boards have been integrated
in a private network to which all engineers have access. Hence, the

7 http://cache.freescale.com/files/graphic/block_diagram/B4860_BD_IMG.jpg

10

TOOLS OF TRADE

developers can use any one of the boards from the board pool. The
network infrastructure is portrayed in Figure 6.

Developers outside the private network do not have access to the
board pool. For this reason, an additional machine is placed with two
interfaces: one for the private network and one for the outside. This
machine is responsible for mediating the CCS connections between
the developers and the boards. It runs a set of CCS processes, one for
each board, to which the engineers connect through the CodeWarrior
IDE. In turn, these processes connect to the CCS process running on
the appropriate board and forward the packages between the two.

When multiple developers share the same resources, synchroniza-
tion issues are bound to occur. In order to manage the access to the
board pool, a tool named Lars was introduced. This command line
application runs on a separate Linux virtual machine from inside the
private network and it allows users to reserve and release boards before
and after using them. Thus, a scenario in which two developers de-
bug on the same board and overlap is less likely to happen. The main
commands are described in Listing 5. Lars is written in Python and
uses a PostgreSQL database to keep all board related information.

Listing 5: Lars commands

list boards list all the boards in the system along with
their reserved status and a summary of their
configurations

info <board> list more detailed board configurations such

as board revision, processor revision, the IP
and the port of the board’s CCS process
running on the mediator machine, the board’s
IP, etc

reserve <board> reserve the board

release <board> release the board

power <board> power the board

reset <board> reset the board

restart <board> software reset the board

11

2.3 HARDWARE ENVIRONMENT

Jouiepepo) Buiuuni
suoneisyiop Jadojanag

sioje1pay

$9D ey} Buuuni auyoewWw XNur

(

(

sse Buiuuny
BUIYOBW [BNUIA

|

J

yiomau ajeald

yiomau
J@ino

Figure 6: The network infrastructure.

STATE OF THE ART

Project management is a requirement in large teams of software de-
velopers. In this chapter we will describe the development process
in a team of baseband engineers and justify the need for a testing
framework.

3.1 CONTINUOUS INTEGRATION

CI is the software development practice of merging a team’s work
frequently, usually on a daily basis [1]. Throughout this process, all
project components are integrated from the start, instead of extra ef-
fort being put into the merging process before a milestone/release.

One of the main issues that occur when Continuous Integration
practices are being used is that, due to the high number of promo-
tions a day, error prone code may be easily integrated in the project.
Furthermore, in AccuRev (Section 2.1), once a change is promoted
to the Integration stream, it will automatically propagate downward
into all the other streams. Thus, once an error finds its way to the
root of the depot it will affect the entire project. Figure 7 portraits this
scenario. In order to avoid this issue, it is a good practice to run unit
tests in the local workspace before any promotions to the Integration
stream.

- -
Stream
1
| IR —— >
I Dev Stream 2 . erroneous
1 promotion
I —— g
Dev Stream 3 - — — erroneous
propagation

Figure 7: AccuRev error propagation.

3.2 DEVELOPMENT PROCESS
In this section we will describe the development process for a team

of baseband engineers by taking a look at the B4860 Long Term
Evolution (LTE) L1 project.

13

14

STATE OF THE ART

The team’s goal is to implement the LTE standard on top of the
B4860 QDs platform. The project is split up into multiple libraries
that one or more developers work on. For each such component, a
separate AccuRev stream is created. Clients require separate compo-
nents instead of the entire project, so each stream acts as an Integra-
tion stream on its own. For each of the component’s features a new
stream can be created with multiple developer workspaces behind it,
as show in Figure 8.

Feature 1

Depot
Integration Workspace 1
Stream

Workspace 3

Feature 2

Feature 3

Component 2

Component 3

Figure 8: B4860 Lte-L1 AccuRev structure.

In order to assure the quality and correctness of their code, the
developers maintain sets of unit tests and functional tests. Unit test-
ing refers to testing program units in isolation. However, there is no
consensus on the definition of a unit. Some examples of commonly
understood units are functions, procedures, or methods. In functional
testing, a program P is viewed as a function that transforms the input
vector X into an output vector Y such that Y = P(X) [3].

Following the CI practices, the developers run a set of small prelim-
inary tests before promoting features from their workspaces. These
batches are called smoke tests. In addition, when major patches or con-
figurations are introduced, a wider set of tests, called regression tests,
is executed.

Test sessions such as these can take up to 8 hours to execute. Fur-
thermore, these tests require excessive processing power, thus the de-
veloper being forced to wait for the sessions to finish until his/her
workstation will be available again. Due to this limitations, the engi-
neers are required to leave the test session to run over night or over
the weekends.

Unfortunately, this solution causes other issues to arise. Due to the
fact that the developers aren’t at their computers when the tests run,
errors caused by the networking environment or the tools” limitations
can not be avoided or resolved on the spot and the entire test session
goes to waist.

3.2 DEVELOPMENT PROCESS

Such errors occur fairly often and may be caused by one or more
of the following:

® One of the CCS processes running on the mediator machine
may be in an unreliable state. This issue will cause the Code-
Warrior’s Debugger Shell to throw certain error when trying to
connect to a board and can be fixed by restarting the respective
CCS process.

¢ The board may be in an unstable state. Again, this will cause the
CodeWarrior’s Debugger Shell to throw errors when attempting
to debug the project. This issue can be fixed by restarting the
board (either through hardware or software mechanisms).

15

ATF 1.0

In order to overcome the issues described in Section 3.2 and to ease
the overall testing process, an ATF was implemented. In the following
sections we will discuss its design and its limitations, that in turn led
to the development of its successor, the ATF 2.0.

4.1 DESIGN

At its beginning, the ATF was needed for testing only one baseband
project with precise specification. Its goal was to assure that all the
component streams and the Integration stream contained only valid
functional code by automatically launching predefined test sessions
on AccuRev promotions. Furthermore, through interacting with Ac-
cuReyv, the developers were able to trigger other test sessions. The ATF
would execute these session on multiple machines and would send
e-mail test reports at the end.

The framework’s main components (Figure 9), discussed in the fol-
lowing sections, were:

¢ the job generator, responsible for triggering test sessions on Ac-
cuRev promotions or user interactions by adding jobs to the job
queue.

¢ the job workers who executed the actual tests by extracting jobs
from the job queue.

trigger
@

promotion
history

job worker

]
1
1
1
1
job worker -r-
1
1
1
1
1)

job worker -

Figure 9: ATF 1.0 design.

4.1.1 The Job Generator

The ATF comes in the aid of the engineers who follow the CI practices.
Since the developers may not have enough time or resources to run

17

18

ATF 1.0

tests before integrating their changes with their colleagues’, they rely
on the ATF to keep all essential streams clean from any bugs. This is
accomplished by creating a special stream, named Ghost Stream (GS),
for each stream of interest, as pictured in Figure 10.

Workspace 1 J

Workspace 2
Workspace 3

Depot
Integration Ghost Stream J——[Component 1 H Ghost Stream J——[Feature 1

Stream

Feature 3

Figure 10: Development depot with Ghost Streams.

A Gs is responsible for guarding the stream it precedes from pro-
motions containing erroneous code. The ATF is aware of all the Gss
in the depot. For each Gs, it knows which tests it needs to run when
changes appear on it. If the tests pass, the framework will automat-
ically promote the changes to the parent stream. If not, the devel-
oper who promoted the changes in the first place will be notified that
his/her code contains bugs and the framework will wait for the next
promotions.

In order to detect the changes that occur on the GSs, the ATF polls
the project’s AccuRev depot every minute: it uses an AccuRev com-
mand to see the latest promotions to each GS and it launches the
corresponding test sessions. To differentiate between the promotions
that were already taken into account and the ones that weren'’t, the
framework maintains a history of these events in a PostgreSQL table.

The ATF knows which tests to run for each Gs depending on the
stream’s name. Thus, all streams need to respect a pattern such as
the following:

<depot name>_<component name>_GS_<anything> \

In addition, in order to trigger a test session without promoting to
a GS, the developers can create temporary streams (snapshots) with
the following name pattern for launching a Test On Demand (TOD).
The snapshot would be deactivated automatically by the framework.

<depot name>_<component name>_GS_TOD_<anything> \

Based on the component name specified in the stream’s name, the
ATF adds the tests that need to run to a test job queue, in the form of
a PostgreSQL table, by specifying:

¢ the stream on which the test will run

4.1 DESIGN

¢ the job’s status (new / running / finished)

¢ the platform on which the test will be executed (predefined
value for each component)

¢ the ID of the developer who launched the test session
* the test’s resolution

¢ the machine on which the test runs

4.1.2 The Job Worker

Each machine that is part of the ATF’s environment polls the job queue
looking for new jobs to run. For each job it finds, it obtains certain
predefined files from the job’s stream and searches the directory struc-
ture for a specific path that points to the CodeWarrior project config-
uration files. An error is reported if the file structure does not follow
the expected directory structure.

Once the CodeWarrior project configuration files are found, the
build process begins. The ATF uses the automated tools described in
Section 2.2.2 to build the project with a predefined build target.

If the build succeeds, the framework will build in a similar manner
a predefined test project written by the developers'. For the test’s
actual execution, a platform on which to run is necessary.

To use a board from the board pool, the ATF needs to reserve one
in the name of a generic user by directly accessing the PostgreSQL
database used by Lars in order to void race conditions.

After reserving a board, the framework extracts the board’s con-
figurations from Lars” database and modifies the project’'s CodeWar-
rior configuration file (.cproject) so that the IDE will use the reserved
board’s RSE settings instead of the default ones when debugging (see
Section 2.2.1).

The next step in running the test is preparing the required test vec-
tors. These vectors are the test’s input. The values returned by the
component after processing these vectors are compared to a set of ref-
erence values. This is how the test’s resolution is set. The preparation
of the vectors is again the responsibility of the ATF.

The last step in the test’s execution is the IDE’s actual launch. As

mentioned in Section 2.2.3, the debug process can be controlled through

the CodeWarrior’s Debugger Shell. This shell can be manipulated
through a TCL script passed as parameter when starting the IDE. In
its first version, the ATF was responsible for managing this script. At
the test’s end, the debugger script returns a pass/fail status which
the ATF interprets. Furthermore, if unexpected errors arise during the

1 When the ATF 1.0 was used, the components were in fact libraries. Thus, they re-
quired separate test projects to link and test them.

19

20

ATF 1.0

obtain new job

'

parse job details f-=-=-=-====-= |

[
[
| i
[
obtain the project’s files !
from the accurev stream

'

build the component
and test projects

platform type
reserveaboard [#---=--==---= 1

!

prepare the
test vectors

!

run the test

'

set the test's
resolution

user name
send the mail report [# = ======~-

promote changes

Figure 11: ATF 1.0 worker diagram.

test’s execution caused by the involved tools” limitations, the job is
re-launched.
This entire test execution process is portrayed in Figure 11.

4.2 LIMITATIONS

As described in the previous section, the first ATF was working with
an excessive set of predefined configurations. For many of these, if the
engineers needed a different structure, the framework’s administrator
had to be contacted in order to patch the exceptional cases. Below are
listed some of the major limitations encountered:

¢ The framework was written in TCL, a scripting language with
a long history but with no built-in support for Object Oriented
syntax, without data structures, and with a relatively small ac-
tive community.

4.2 LIMITATIONS

Only one project depot was supported. This wasn’t relevant in
the beginning when only one project needed the ATF but when
more projects appeared, they were difficult to integrate in the
framework.

The GS names had to indicate the component that needed test-
ing.

AccuRev uniquely-named snapshots were created in order to
launch test sessions on demand but once the test ran, the snap-
shot would remain in the depot. Once the snapshot was deacti-
vated by the ATF, its name still couldn’t be used again by other
developers. Thus, the depot would in time be flooded with de-
activated snapshots.

For each component, a predefined set of source files would
be extracted from AccuRev when running a test. If additional
source files were introduced, the ATF’s administrator had to be
contacted in order to update the component’s required files list.

The project had to follow a specific directory structure when it
came to organizing it’s source files and configuration files.

Each test assumed that a library had to be built and a test had
to be run. If a project required only library building, the ATF’s
administrator had to intervene and add the project to a special
build-only list.

The tests always ran on the same platform types. At the time,
those were the only options but as more projects appeared, so
did more platforms.

The build target was presumed to be first one specified in the
project’s CodeWarrior configuration file for both the libraries
and the tests.

The ATF’s administrator was in charge of managing the TCL
Debugger Shell script.

21

ATF 2.0 IMPLEMENTATION

The first ATF was a simple solution for a simple problem but as multi-
ple projects appeared with different configurations and requirements,
patches and exceptions had to be introduced in order to solve the new,
more complex, issues. Overtime, maintaining the project became too
big an effort due to the high number of irregularities. The chosen solu-
tion was to implement a new, more robust framework that supported
easily configurable projects.

5.1 DESIGN

promotion
history

AccuRev
trigger
job generator
L

job worker

job worker command
queue

result
aggregator

job worker

trigger
queue

client

Figure 12: ATF 2.0 design.

The ATF 2.0 introduces several changes and new features from its
predecessor:

¢ It is written in Python, a scripting language with a compre-
hensive standard library, Object Oriented syntax support and
a large active community of both users and developers.

¢ A client through which users can trigger test sessions instead
of using AccuRev snapshots. The sessions can be launched ei-
ther at the moment or multiple times with a recurrence factor
specified through a cron syntax.

* A SCF maintained by the user through which they are free to
define and customize their test sessions without the need of
contacting the framework’s administrator (see Section 5.2).

23

24

ATF 2.0 IMPLEMENTATION

* A result aggregator in charge of all the actions that need to be
performed at the end of a test session (obtaining all the results
from the workers, composing the final mail report and promot-
ing the changes to the parent stream in the case of a GS).

* A command queue through witch various instructions can be
passed on to all the main components.

In Figure 12 we present the framework’s new design. We will dis-
cuss its updated workflow in the following sections.

5.2 THE SESSION CONFIGURATION FILE

The SCF is a XML document maintained by the ATF’s users in their
projects” depots. Each SCF describes the test sessions that can be ran
for the provided project.

With the help of this file, the developers can split a single large test
into multiple shorter ones that can be ran in parallel by the ATF, thus
shortening the test’s duration considerably.

These files contain information regarding the platforms on which
the tests will run, the CodeWarrior versions that will be used, the
paths to the tested projects, their build targets, macro definitions
and dependencies, plus a set of pre-processing and post-processing
scripts. Furthermore, the TCL debugger script is maintained by the
developers and the ATF’s only responsibility is calling it.

test session

A

test design

l test harness

test design test design

post-processing script J

build target
Lo flavors -
iiiiiiiiiiiiiiii test script

Figure 13: The Session Configuration File.

pre-processing script J

source files

platforms

[y

5.2 THE SESSION CONFIGURATION FILE

The SCF’s structure is pictured in Figure 13. It was designed to
follow the “BS7925-2 Standard for Software Component Testing” [2] and
its main components are:

* The test session, the main entity used to test any number of
project with different configurations. It is launched by the users
by interacting with either AccuRev’s GSs or with the ATF’s client
and it contains multiple test designs.

<test_session name="DLCCH_PROC_session">
<test_design name="DLCCH_PROC_Setl"/>
<test _design name="DLCCH_PROC_Set2"/>
</test_session>

* The test design selects the actual test environment that will run
(the test harness), picks its configuration (its flavor and plat-
form) and specifies its input (the test case). Furthermore, the
users can add a set of pre-processing and post-processing scripts.

<test_design name="PDSCH_AL_List5 Sync">
<test_harness name="module_name"

flavor="rev2_sync_build"
platform="B4860"/>

<test_case>ATF\TCnamelList5</test_case>

<pre_processing what_to_call="ATF\pre.py"
from_where_to_call_it="LI1\SP\"/>

<post_processing what_to_call="ATF\post.tcl"
from_where_to_call_it="L1\SP\"/>

</test_design>

 The test case, the input data used by the running test. By splitting
the initial input vectors into multiple sets, the tests take shorter
time to end when an in parallel.

* The pre/post-processing scripts will be run before/after the test’s
execution from relative paths specified by the user.

® The test harness contains the descriptions of the test’s environ-
ments. It contains the source files needed to run the test, a se-
ries of flavors describing different configurations and a series of
platforms on which it can run.

<test_harness name="MatrixIC_test">
<source_files>ATF/MIC</source_files>

<flavors>

26 ATF 2.0 IMPLEMENTATION

<flavor name="rev2_build">
<build_target>B4860_QDS_rev2</build_target>

<test_script what_to_call="ATF\MIC\run.tcl"
from_where_to_call it="L1\SP"/>

<reports>L1\doc\TestReport</reports>

<dependencies>
<component name="1lib" flavor="rev2"/>
</dependencies>

<macros>
<macro name="M_EDF" defined="true"/>
</macros>
</flavor>
</flavors>

<platforms>
<platform type="B4860">
<project_path>\L1\SP\project\CW\</project_path
>
</platform>
</platforms>
</test_harness>

* Harness platforms that specify the path to the test’s CodeWarrior
project.

* Harness flavors that describe the test’s possible configurations.
They specify the test’s build target, the preprocessing macros
that need to be activated and/or deactivated, the components
(libraries) that it depends on, the TCL test script and the report
files that will be sent back to the user at the test’s end.

* The components are projects that need to be built before the test.
They have a similar structure to that of the test harness (they
contain an enumeration of flavors and platforms) but they lack
the source files, the test script and the dependencies.

<component name="module_1lib">
<flavors>
<flavor name="rev2lib">
<build_target>lib</build_target>
</flavor>
</flavors>

<platforms>

5.3 WORKFLOW

<platform type="B4860">
<project_path>L1I\SP\CW</project_path>
</platform>
</platforms>
</component>

* The test script is the TCL CodeWarrior Debugger Shell script that
is responsible for running the test. Tha ATF calls it from a user-
specified path and passes it the test case mentioned in the test
design.

* Hardware descriptors are a separate section of the SCF and they
specify the CodeWarrior versions that needs to be used by all
the platform defined in the test harnesses.

<hardware>
<platform name="B4860next"
type="B4860"
cw="10.8.0"/>
</hardware>

* Platform tags can be added to the test session or in the flavors of
harnesses and components to limit the range of boards that can
be used to run a test. For example, such tags may contain board
revision numbers or processor revision numbers. These tags are
searched for by the ATF in the output of the lars list boards and
lars info commands.

5.3 WORKFLOW
5.3.1 The Client

The client is the framework’s component with which the users inter-
act most often. It is a script placed on the Virtual Machine running
Lars (see Figure 6) so that all the developers can access it. For each
project supported by the ATF there is one client instance. Through it
they can trigger test session on demand or recurrent sessions.

The developers pass to the client script the name of the test session
they want to run, the name of he stream on which the session will be
executed, and the recurrence factor (either -now for on demand test
or -cron <cron> for recurrent tests). They can also specify the users
who should receive the test reports at the end of the session. If no
users are specified, the user who ran the command is registered. In
Listing 6 and Listing 7 we can see how the users interact with the
script in order to trigger test sessions.

Listing 6: Add an on demand trigger

27

28

ATF 2.0 IMPLEMENTATION

$./atf_client.py add -stream Feature -session TestSession -now -coreid userl

Listing 7: Add a recursive trigger

$./atf_client.py add -stream Integration -session IntSession -cron 0 0 * x *
The next two iterations will be at (UTC +2):

2014/06/27 00:00:00

2014/06/28 00:00:00

Continue?
[y/n]:

The provided values are introduced to the Trigger Queue, a Post-
greSQL table with the fields described in Figure 15a. The Depot field
is set by the script itself from its configurations. The Cron field is set
to either cron or now, depending on the trigger’s type. Similar, the
NextCron field is set to either now or the timestamp of the trigger’s
next iteration. This timestamp is calculated using the croniter Pyhton
module .

The users can also list (Listing 8) and remove triggers. By removing
a trigger, its NextCron field is set to done.

Listing 8: List active triggers

$./atf_client.py list -triggers

| user_1 | Integration | ModuleSession_next | 0 21 * x 6 | 2014/06/21 21:00:00]|
| user_2 | Integration | LTE_regression_next | 30 1 x x 1 | 2014/06/19 01:30:00]|
Fommmm - Fomm e - - B L Fomm e Fmm e oo +

Listing 9: Remove a trigger

$./atf_client.py remove -trigger 377
The following trigger will be deactivated:

ID: 377

Users: wuser_1

Stream Integration

Session LTE_regression_session_next

Cron 301 x x 1

Next iteration (UTC +2): 2014/06/27 01:30:00

Continue?
[y/n]:

1 https://pypi.python.org/pypi/croniter/o.3.4

5.3 WORKFLOW

5.3.2 The Job Generator

The job generator has a somewhat similar workflow compared to its
predecessor. As shown in Figure 14, multiple processes run in parallel
waiting for different types of events. A main process spawns a trig-
ger polling process and a GS polling process for each project which
require such streams.

main process

[trigger polling } [GS palling

GS polling

process process process
< = ‘
P - 7N ~ N S~ \\
< ~ -
’ ~ \
S . i W ~o)
f trigger | ‘f trigger | o
\ process ! | process !
_______ oo Vo JRTREERS

promotion
history

~—

Figure 14: Job generator workflow.

The trigger polling process is running in an infinite loop and checks
the Trigger Queue for new events. It first obtains all the triggers that
aren’t done. For each one of them, if they are on demand triggers
(their cron field is set to now) it sets them as done and spawns a new
process that will be responsible for the actual job generation. If the
triggers are recursive ones, it updates their NextCron field and again
spawns a new process for the job generation.

The Gs polling processes also run in a loop and search for the latest
promotion on all the streams that contain a certain predefined pattern
and don’t have an empty default group (see Section 2.1). This pattern is
set when a new project is added to the ATF by the project’s maintainer.
For each such stream, the latest promotion’s transaction ID is verified
and searched for in the Promotion History table. If it already exists,
the transaction was already take into account. If not, the stream’s
status is verified. If it contains conflicts it is abandoned. Otherwise,
the job generation routine is called. The Promotion History table’s
format is described in Figure 15b.

The actual job generation obtains the SCF from the stream (provided
by the user through a trigger or a GS) and parses it in order to find
the description of the test session it needs to launch. As far as GSs are

29

30

ATF 2.0 IMPLEMENTATION

concerned, the ATF searches for a session that has the same name as
the stream. For triggers, the users provides the name of the session.

The ATF does some lexical and semantic checks in order to ver-
ify the SCF’s structure. If, for example, two sessions have the same
name, or a test design doesn’t exist, or a platform uses a CodeWar-
rior version that the framework doesn’t support, the job generation is
abandoned and the user is notified.

If the SCF passes all these checks, the test session’s test designs
are considered separate jobs and inserted in the Job Queue for the
workers to run them. The queue’s structure is pictured in Figure 15c.

In order to avoid other developers from promoting to the testes
streams and contaminating the used code between two jobs of the
same session, the framework saves the AccuRev transaction on which
to run the test. Thus, when obtaining the source files from the stream,
all workers will use the same transaction. For GSs, the transaction
ID is the ID of the promotion which triggered the session. For user
triggers, the current timestamp is used instead of an ID.

Furthermore, for GSs, if the test session passes, the modified files
from the stream need to be promoted to the parent stream. Thus, a
promotion flag is added to the Job Queue which indicates if promo-
tion is requested at the end of the session. Naturally, this flag is set to
False for user triggers and to True for GSs.

The job’s status field, initially set to new, is updated by the workers
along with the resolution and machine fields.

After adding the new jobs to the Job Queue, the framework sends
an e-mail to the users who launched the session to let them know the
details of the jobs that were scheduled.

5.3.3 The Worker

The workers are responsible for running the test jobs. Not all work-
ers are the same. They each have their own CodeWarrior versions
installed and support some projects so that a test session that wants
to run for a project doesn’t have to wait for the test sessions run-
ning for other projects to end. Thus, a bottle neck may be avoided. Its
workflow is described in Figure 17.

The worker polls the Job Queue waiting for tasks that he can run
(new jobs with appropriate CodeWarrior versions and project names).
Once a job is obtained, it updates its status to running and its machine
to the worker’s name and retrieves its SCF.

After parsing the SCF, based on the fields from the Job Queue, the
worker determines the source files it needs to obtain from AccuRev
from the appropriate stream.

The pre-processing script is ran from a command line shell using
Python’s subprocess module. The path from which the script should
be called is specified by the user in the SCF. It is the shell’s responsi-

5.3 WORKFLOW

Trigger Queue

D ‘ Promotion History |

Depot

StreamName ID
TestSession Depot

Users StreamName
Cron Transaction

NextCron

\ User

(a) The Trigger Queue. (b) The Promotion His-
tory table.

Job Queue

ID
Depot
StreamName
TestSession
TestDesign
TestHarness
TestFlavor
Platform
CodeWarrior
Transaction ‘ Command Queue
Users
Status ID
Resolution Command
SessionlD From
Machine To
\ PromoteFlag J Status
(c) The Job Queue. (d) The Command
Queue.

Figure 15: The ATF’s database.

bility to determine with which interpreter to run the script. The ATF
captures the script’s output and logs it to a file.

Next, the test’s dependencies are built. If there are components
referenced in the test harness’ flavor, their preprocessing macro defi-
nitions are updated using the ecd.xe CodeWarrior tool (see Listing 3).
The same tool is than used to build the components with the targets
specified in their flavors.

The test itself is built following the same steps as the components.

In order to run the actual test, a board from the board farm must
be reserved so that no other users will intervene while the test is
executing. This is achieved by first obtaining a list of usable boards
and then attempting to reserve a random one from the list until an
available one is secured. The list of potential boards is created by pars-
ing the output of the lars list boards and the lars info commands and
searching for the specified platform and the user defined hardware
tags.

31

32

ATF 2.0 IMPLEMENTATION

After reserving a board, the test CodeWarrior project must be aware
of the board’s configurations in order to run on it. Thus, the project’s
XML RSE configuration files must be parsed and the correct board
settings must be introduced (see Listing 1). All the relevant board
informations are obtained from the Lars database and replaced in the
XML files using regular expressions.

Once the CodeWarrior test project is aware of the board it has to
use, it also has to be able to read the test input. The cwide.exe can
accept a TCL debugger script but it can not pass it arguments. In
order to overcome this limitation, we introduced a TCL Debugger
Shell wrapper responsible for passing the appropriate arguments to
the debugger script. As described in Figure 16, the ATF will take the
following steps in starting the debug process:

* writing the path to the test script, the path from where to all the
test script and the path to the test case in a text file on disk

¢ calling the IDE by passing it the wrapper as argument

¢ the wrapper reads the paths from the input text file and calls the
test script from the specified path with the test case as argument
using the TCL source command covered by a catch statement

* when the test script ends its execution, the wrapper saves its
result and writes it to a separate text file on disk, then quites
the IDE

* if errors occur, the wrapper catches them in the catch statement
and writes them to the result file

¢ the framework than proceeds to read the test’s result or errors
from the result file on disk.

As specified in Section 3.2, some errors are bound to occur during
the test’s execution. The ATF has a list of known errors that it tries
to overcome by relaunching the test when they occur. Furthermore,
if CodeWarrior happens to freeze for any reason, the ATF works as a
watch dog, force killing the IDE after a timeout.

The test’s resolution is set by the output of the test script. Pass/fail
messages are expected.

The post-processing script is ran in an identical manner to the pre-
processing one.

If the pre/post-processing scripts return errors the job is aborted
by setting its status to abort and its resolution to error.

If the build fails, or the test script fails, the job is finished with the
resolution fail. If the test script throws errors, the job is finished with
the resolution error. Otherwise, the job’s resolution is set to pass.

In the end, after setting the test’s resolution, all the logs generated
by the pre and post processing script, the build processes and the

5.3 WORKFLOW

write | ATF read
-)

Y

hJ / CodeWarrior Debugger Shell \ r

args resuilts
;l_l

wrapper -
read PP write

call

Figure 16: The CodeWarrior Debugger Shell wrapper.

test script, along with the report files specified by the user in SCF, are
gathered in an archive and copied to a shared location (the Linux ma-
chine running the CCS Mediator). The acrhive also contains a pickled
Python object describing the job’s configuration and resolution. The
archive’s name contains the job’s ID and the session’s ID for it to be
easier to distinguish from the others.

Finally, the worker queries the Job Queue to see if all the jobs from
the session have finished their execution. If so, it sends a command
to the result aggregator through the Command Queue to let him
know he needs to send the final report for the specific session. The
command is report <session number>. The structure of the Command
Queue is described in Figure 15d.

5.3.4 The Result Aggregator

The aggregator polls the Command Queue for commands addresses
to him (whose to field contains his name).

Once such a report command is found, it parses it to obtain the
session ID it needs to address. It then retrieves all the result archives
from the shared location, unzips them and zips them back into a
single one. This final archive is put back to the shared location for the
users to retrieve them.

The pickled job objects are de-serialized from file and consulted
in order to determine the session’s final resolution and to compose
the mail report. The aggregator will also promote the files from the
specified transaction of the session passed and has the promotion flag
activated (in the case of GS generated sessions).

The mail report contains, for each job, the following information:

e overall resolution

33

The pickle Python
module is used for
serializing and
de-serializing
Python objects to
and from text files
by converting them
to and from byte
streams.

34 ATF 2.0 IMPLEMENTATION

build status (for each dependency)

* build warnings count

® run status

¢ run duration

¢ the name of the board that was used

¢ the name of the worker on which the job ran

¢ details extracted from the SCF such as the test design, the test
harness, the test flavor, the platform and the CodeWarrior ver-
sion

Finally, the report is sent to the users.

5.3 WORKFLOW 35

Y

obtain new job

A J

obtain the SCF

A J

obtain the source files

Y error

runthe | __ _____
preprocessing script

|

<Z_ [buidthe

) components

I

1 |

b fail

:1 ----- build the test

I

I

I

1

: manage board

]

' ¥

I fail -
- = = run test -

predictable
errors/
timeout

3
t

unpredictable
errors

run the

postprocessing script

v

bt

r
1
I
I

Y

finish job

v

D 2R PP |

send results - abort job

Figure 17: Worker block diagram.

RESULTS

In this chapter we will illustrate some of the ATF’s accomplishments,
as well as some of its shortcomings.

Comparing it to its predecessor’s, the framework’s value is indis-
putable due to the SCF which grants its users the freedom to define
their test sessions as divers as required.

We can analyze the framework’s performance by studying the time
it takes the developers to run various tests.

The baseband engineers working on implementing the LTE stan-
dard on B4860 QDs platforms develop multiple modules in parallel.
Each module requires to be validated by its own tests. Below we
briefly describe some of these modules:

e Module 1: tests the Downlink Control Channel (DLCCH) module
in charge of transmitting the base station’s' control messages to
the User Equipment (UE)?.

* Module 2: tests the Physical Uplink Shared Channel (PUSCH)
module responsible for carrying the UE’s data to the base sta-
tion3.

* Module 3: tests the Physical Downlink Shared Channel (PDSCH)
module, the base station’s main data bearing channel, in a non
synchronized manner

* Module 4: tests the synchronized PDSCH module

* Regression Test: an extensive test session that covers all of the
project’s modules

As mentioned in Section 5.2, the SCF allows the baseband engineers
to divide a test case into multiple ones so that they can be run in
parallel as ATF jobs. In Table 1 we compare the previously described
modules in order to emphasize the time difference between executing
them by a developer and running them with the framework. Seven
workers were used and a set of 14 boards. For a better visualisation
of the same data, see Figure 18.

In order to have each job independent from the others, one of
the framework’s shortcomings is that the workers need to obtain the
source code and rebuild the projects each time. Thus, for short tests,
the time it take for a worker to retrieve the source files from AccuReyv,

1 A base station is a transceiver that connects mobile phones to the telephone network
2 An UE is an end-user device used for communication, such as a mobile phone
3 http://www.eetimes.com/document.asp?doc_id=1278199

37

38 RESULTS

Session Manual Time Job Count ATF Time
Module 1 30m 2 17m
Module 2 1ih 4 3om
Module 3 3h 10 1h
Module 4 4h 30m 10 1h 15m
Regression Test 18h 63 3h 3om

Table 1: Time to run a test session comparison.

1200

1000

B0O

600

M Manual run time (min)

400

B ATFrun time (min)

200

Module 1

e e L

Module 2 Module 3 Module 4 Regression Test

Figure 18: Time to run a test session comparison.

build the project and run it will take more time than it takes the
project’s developer to debug it by hand. This is a small impediment
and, when such jobs make part of grand test sessions, their delay is

unnoticeable.

FUTURE WORK

The ATF is a fairly complex environment but many features can still
be added. In this chapter we will describe a couple of these possible
additions.

7.1 COMMUNICATING WITH THE WORKERS

Test sessions may be launched by mistake or source files may be
forgotten. In such scenarios, the developers may want to abort the
launched test session and trigger a new one.

There currently is no direct method of aborting a job. The user need
to contact the framework’s administrator and ask him to restart the
workers running a certain session.

The current method of stopping a worker is accessing the Virtual
Machine on which it runs and killing it by hand. Furthermore, if the
worker is executing a job when it is killed, the board it uses remains
reserved in Lars and the job remains in a running state in the Job
Queue.

It is desired for the users to be able to abort a running session using
the ATF’s client. This would be implemented using the Command
Queue by sending messages to the workers in a similar manner as
sending report requests to the Result Aggregator.

7.2 RUNNING A TEST SESSION FROM AN ARCHIVE

Before a project release, the developers strip the AccuRev stream of
all non-essential files and obtain an archive with the files that will
be delivered to their clients. The release manager may want to run a
final set of validation tests on this archive before its delivery.

This task would required the framework to be capable of retrieving
source files from an archive from a shared location as well as from
AccuRev streams.

39

CONCLUSION

Testing is a major part of any application’s development process.
When practices such as CI are used, complex test sessions need to
be run fairly often. Thus, an automated testing tool can facilitate a
project’s testing phase.

When it comes to baseband embedded projects, a hardware envi-
ronment setup must be conducted before the testing the product. Due
to this cause, the projects can not be supported by existing automated
testing applications.

In this paper we described the design of the ATF 1.0, a distributed
automated testing framework aimed at baseband projects, and listed
its limitations.

Next, we introduced the ATF 2.0, a more easily configurable and
user friendly version than its predecessor. We illustrated its compo-
nents, we outlined its workflow and, finally, we reported its perfor-
mances.

All in all, the framework’s implementation was a success. At this
time, the ATF is used by baseband engineers and its development will
continue.

41

BIBLIOGRAPHY

[1] Martin Fowler. Continuous Integration. 2006.

[2] British Computer Society Specialist Interest Group in Soft-
ware Testing. BS 7925 - 2 Standard for Software Component Testing.
British Standards Institute, 1997.

[3] Kshirasagar Naik and Priyadarshi Tripathy. Software Testing and
Quality Assurance. John Wiley & Sons, Inc., 2008.

43

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	2 Tools of Trade
	2.1 AccuRev1.05®
	2.2 CodeWarrior1.05®
	2.2.1 Project Organization
	2.2.2 Automation
	2.2.3 Debugger Shell

	2.3 Hardware Environment
	2.3.1 The Freescale B4860 QDS1.05®
	2.3.2 The Networking Infrastructure

	3 State of the Art
	3.1 Continuous Integration
	3.2 Development Process

	4 ATF 1.0
	4.1 Design
	4.1.1 The Job Generator
	4.1.2 The Job Worker

	4.2 Limitations

	5 ATF 2.0 Implementation
	5.1 Design
	5.2 The Session Configuration File
	5.3 Workflow
	5.3.1 The Client
	5.3.2 The Job Generator
	5.3.3 The Worker
	5.3.4 The Result Aggregator

	6 Results
	7 Future Work
	7.1 Communicating with the Workers
	7.2 Running a Test Session from an Archive

	8 Conclusion
	Bibliography

