
Connex Accelerator
Instruction Set Architecture Specification

October 21, 2018

Contents

1 Instruction Formats 2
1.1 Opcode Formats . 2

2 Instructions 3
2.1 Scalar Instructions . 3
2.2 Vector Instructions . 4

3 Similitude Connex ISA, LLVM IR (and Opincaa ASM) 6

1

1 Instruction Formats

The Connex accelerator utilizes a 32-bit Instruction Set Architecture (ISA). Instructions
are divided into Scalar Instructions (SI) and Vector Instructions (VI). There are two main
instruction formats, shown in Table 1. Register addresses are 5 bits in size, allowing for
a maximum of 32 registers (SIMD or Scalar). The immediate value is 16 bits in size,
requiring the removal of the right operand address and the use of a reduced opcode for
immediate value instructions. The immediate value, when present, replaces the right
operand in both the scalar and vector pipelines.

Instruction Type
Bit Offset

31:26 25:23 22:15 14:10 9:5 4:0
Immediate
Value

OPCODE IMMEDIATE VALUE LEFT DEST

Non
Immediate

OPCODE RESERVED RIGHT LEFT DEST

Table 1: Instruction Formats

1.1 Opcode Formats

The Connex opcode is 6 or 9 bits in length and is always present on the most-significant
bits of the instruction. The opcode consists of a 3-bit fixed section and a 6-bit variable
section which is formatted differently depending on the contents of the fixed section.
The PIPE bit is always present at offset 8 and specifies whether the instruction is vector
(PIPE=1) or scalar (PIPE=0). The IMM bit is always present at offset 7 and specifies
whether the instruction is Immediate-Value (IMM=1) or Non-Immediate (IMM=0). The
ALU bit is always present at offset 6 and specifies whether the instruction utilizes ALU
(ALU=1) or other processing resources (ALU=0). When ALU is set the instruction
always writes back results to the register file.

Opcode formats for Vector Instructions are listed in Table 2. The WB bit is present
if ALU is not set and specifies if the instruction writes back results to the register file
(WB=1) or does not write back (WB=0). The NON-ALU SEL field specifies which
processing resource is targeted by the instruction. Table 3 shows the resources selected
by the values of NON-ALU SEL. When IMM is set, bit 0 of NON-ALU SEL is set. This
enables access of Immediate-Value instructions only to the Local Store and Immediate
Value instruction field.

The NON-ALU SEL field specifies which processing resource is targeted by the in-
struction. Table 3 shows the resources selected by the values of NON-ALU SEL. When
IMM is set, bit 0 of NON-ALU SEL is set. This enables access of Immediate-Value
instructions only to the Local Store and Immediate Value instruction field.

The OP field is present if ALU is set and specifies which type of operation is selected
inside the ALU. Table 4 shows available operation types. When IMM is set, bit 0 of
OP is set. This enables access of Immediate Value instructions only to Arithmetic and
Logical operations

The SUB-OP field selects the particular operation to be executed within an operation
type. Table 5 shows how SUB-OP values correspond to ALU operations.

2

Bit Offset
8 7 6 5 4 3 2 1 0

PIPE IMM ALU
0 WB NON-ALU-SEL

0
1 SUB-OP OP

MODIFIERS

0 WB NON-ALU-SEL[2:1] 1
1

1
1 SUB-OP OP[1] 1

Table 2: VI Opcode Formats

NON-ALU SEL Value Accessed Resource
000 Index Read
100 Inter-Cell Shift
001 Local Store Read
101 Local Store Write
010 Multiply Read
110 Extension Register Read
011 Immediate Value Read
111 Cell Enable

Table 3: NON-ALU SEL Values

OP Value Operation Type
00 Shift/Popcount
01 Arithmetic
10 Comparison
11 Logical

Table 4: OP Values

Op Type
SUB-OP
Value

Operation Op Type
SUB-OP
Value

Operation

Shift
Popcount

00 Left Shift Logical

Comparison

00 Equal
01 Right Shift Logical 01 Signed Less
10 Right Shift Arithmetic 10 Unsigned Less
11 Popcount 11 Reserved

Arithmetic

00 Sum

Logical

00 Logical Not
01 Difference 01 Logical Or
10 Sum with Carry 10 Logical And
11 Difference with Carry 11 Logical Xor

Table 5: SUB-OP Values

2 Instructions

2.1 Scalar Instructions

Scalar instructions (SI) follow the same formats as vector instructions. The PIPE bit is
not set for scalar instructions. Scalar instructions affect two scalar registers:

• LC loop counter, specifies how many times a subsequent jump will execute

3

• PC program counter, indicates where instructions are fetched from, in the current
instruction stream

Table 6 lists the scalar instructions and their behaviour.

Mnemonic Description Opcode
nop No operation 000000000
setlc LC = Immediate Value 10101
ijmpnzdec Require: Immediate Value <1023

If (LC != 0): PC = PC − ImmediateV alue
LC = LC − 1
If(LC == 0):PC = PC + 1
LC reverts to initial value

10011

Table 6: Scalar Instructions

2.2 Vector Instructions

Table 7 presents all vector instructions. Some instructions execute conditionally upon the
value of the Active flag, i.e., if Active is not set, they behave as nop. Certain instructions
set the carry, less and equal flags:

• the carry flag is set by:

– add, when R[left]+R[right] overflows,

– addc, when R[left]+R[right]+carry overflows,

– sub, when R[left]-R[right] underflows,

– subc, when R[left]-R[right]-carry underflows,

• the less flag is set by lt when R[left] is less than R[right],

• the equal flag is set by eq when R[left] is equal to R[right],

In the table, referring to flags, a U entry indicates undefined (data dependent) values
of flags after the execution of the instruction. Where no value is indicated, the instruction
does not modify flags. Otherwise, the instruction may behave, with regard to a particular
flag, in an identical way to add, addc, sub, subc, lt, or eq.

Notes:

• Memory instructions write, iwrite and read (except iread) require the insertion
of a delay slot of one cycle between them and the instruction(s) that generate their
operands. Following are all relevant examples we can have with delay slots:

R1 = R2 + R3

NOP // or other instruction to fill the delay slot

R4 = LS[R1] / LS[R1] = R4 / LS[R10] = R1 / LS[5] = R1

• It is necessary to insert a delay slot of one cycle between selection instructions
(wherexx) and the instruction which affects the flag utilized for selection. For
example:

4

R1 = (R2 == R3)

NOP // Alex: or other instruction that does not

// alter Equal flag to fill the delay slot

WHERE_EQUAL

• When all or some of the cells are disabled, reduction operations with operands from
the local store (code example: R1 = LS[15] then immediately REDUCE(R1)) return
an undefined result. The programmer must ensure that all cells are re-enabled, by
issuing an endwhere instruction, before any such reduction occurs.

• At power-up, Active is zero (i.e., the cell’s register file and local store will be
disabled) until an endwhere instruction is received.

• There is no explicit MOV (move instruction), but the programmer can move data
from one register to the other in several ways:

– ishl R0, R1, 0 (produces undefined flags)

– ishr R0, R1, 0 (produces undefined flags)

– ishra R0, R1, 0 (produces undefined flags)

– or R0, R1, R1 (recommended, produces constant flags: Carry = 0 Less = 0
Equal = 1)

– and R0, R1, R1 (recommended, produces constant flags: Carry = 0 Less = 0
Equal = 1)

• Regarding the functionality:
The shift vector unit seems to contain 2 architecturally non-visible vector registers,
which are actually continuously operated by the unit: a 1st register with values
to be moved around and a 2nd register with movement directions, which should
have only non-negative values. The cell-shift instructions take as input 2 (vector)
register operands, which are copied, respectively, in the architecturally non-visible
registers of the shift vector unit. These instructions take normally several cycles
to finish (i.e., the shift vector unit to converge, to obtain a ”steady-state” result).
The ldsh instruction retrieves the result from the shift vector unit.

The cellshl instruction decreases in each cycle by at most 1 unit each value of the
2nd register if not zero, until all the values of the 2nd register become zero.

During each cycle of execution of cellshl, each element of the 1st register is copied
from the immediate/neighbor right cell, (modulo number of lanes, i.e., it considers
the register to be wrapped around) if the corresponding element of the 2nd register
is not zero (we look for zero at the current element, not in the neighbor right cell),
in which case this latter value is also decremented. Due to the modulo operation,
the cell-shift instruction experiences also a rotate effect.

Example of execution of the instruction cellshl R0, R1, where R0 = [3 4 5 6], R1 =
[0 1 2 2] (we assume the number of lanes of Connex is 4):

Before cycle 1:

1st reg: 3 4 5 6 // the data is loaded in the 1st register

2nd reg: 0 1 2 2 // the move directions are loaded in the 2nd register

5

End of cycle 1:

1st reg: 3 5 6 3

2nd reg: 0 0 1 1

End of cycle 2:

1st reg: 3 5 3 3

2nd reg: 0 0 0 0

Key takeaways: cellshl puts values to the left, while cellshr puts values to the
right. The number of cycles to execute these operations can be considered equal to
the maximum value of the 2nd vector operand.

3 Similitude Connex ISA, LLVM IR (and Opincaa

ASM)

The Connex Instruction Set Architecture (ISA) is presented in Table 8. The Connex
Instruction Set Architecture (ISA) contains arithmetic, bitwise logical, logical, memory
access and nop instructions. It also has sum-reduce (red, in Opincaa represented by RE-
DUCE), shift vector (cellshl/r, which moves the data in the vector and ldsh, which reads
the shift vector), block predication instructions (whereeq/lt/cry and endwhere, which
have in Opincaa corresponding instructions starting with EXECUTE) and loop with
counter instructions (setlc and ijmpnzdec, in Opincaa represented by REPEAT(imm)
and END REPEAT). A complete description of the ISA is given in [3] and [1]. As we
can see, Connex has rather limited control flow instructions: only loops of constant trip
counts and a predication mechanism using the Boolean values of the Carry, Less or Equal
flags, set previously for each lane. It does not have instructions such as call or condi-
tional branch, available, for example, in NVIDIA GPU’s PTX assembly [5]. While the
lack of branches implies there is no control divergence, the Connex predicated blocks can
be arbitrarily large and the inherent inefficiency of having threads executing conditional
code on a SIMD processor remains.

As already discussed, all instructions take 1 cycle, except the sum reduction, which
takes log2(CV L) cycles, and the shift vector operations, which take at the maximum
CV L cycles under normal conditions.

We note that the red Connex instruction performs sum reduction over a vector of 16-
bit unsigned elements, which is required for the efficient implementation of reduction for
32-bit (or 64, etc) integer element vectors - for example, we can send from the CPU to the
standard Connex with 128 (16-bit) lanes a vector of 64 32-bit integers for reduction, which
fills a vector line of the accelerator. We should also have a red Connex instruction for
vectors of 16-bit signed elements. Similarly, the multiplication is performed on unsigned
16-bit integer vector operands in order to allow the efficient multiplication of 32-bit
(or larger) signed integers. An interesting property is that the lowest 16 bits of the
32-bit result, returned by the multlo instruction, is the same for signed and unsigned
multiplication, so we should normally add to the Connex ISA only a multhi for 16-bit
signed integer input operands.

The LLVM IR vector instructions were first described in [2]. They have little predi-
cation support: only the vector load and store, gather and scatter are masked.

6

The LLVM language is in most aspects more higher level than the Connex assembly
language, which we target to compile to. LLVM has arithmetic, bitwise logical and logical
instructions that work on scalar and also vector operands. LLVM’s select instruction can
be translated to Connex using its where and arithmetic operations. The shufflevector
and extractelement LLVM instructions with arbitrary arguments are rather difficult to
translate efficiently to Connex. On the other hand, Connex’s vload instruction can be
represented in LLVM IR with an insertelement followed by a shufflevector. Also, the
LLVM IR masked gather and scatter intrinsics have an equivalent in the read and write
Connex instructions.

Opincaa is an everything (decomposition, mapping, communication and synchroniza-
tion) explicit parallel programming model [6]. Opincaa is similar to OpenCL [4], only
that it targets just the Connex accelerator and writes kernels for it in vector assembly
language instead of OpenCL C.

References

[1] C. B̂ıră, L. Petrică, and R. Hobincu. OPINCAA: A Lightweight and Flexible Programming
Environment For Parallel SIMD Accelerators. Romanian Journal of Information Science
and Technology, 16(4), 2013.

[2] R. L. Bocchino, Jr. and V. S. Adve. Vector LLVA: A Virtual Vector Instruction Set for
Media Processing. In Proceedings of the 2nd International Conference on Virtual Execution
Environments, VEE ’06, pages 46–56, New York, NY, USA, 2006. ACM.

[3] Gheorghe M. Ştefan. The Connex Instruction Set Architecture, 2015.
[4] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg. OpenCL Programming

Guide. Addison-Wesley Professional, 1st edition, 2011.
[5] D. A. Patterson and J. L. Hennessy. Computer Organization and Design, Fifth Edition:

The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2013.

[6] D. B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Comput.
Surv., 30(2):123–169, June 1998.

7

Mnemonic Description Condition Opcode
Carry
Flag

Less
Flag

Equal
Flag

nop No operation 000000000
red Launch reduction with R[left] 100000000
iwrite LS[Immediate Value] = R[left] Active 110010
iread R[dest] = LS[Immediate Value] Active 110100
write LS[R[right]] = R[left] Active 100010100 Sub Lt Eq
read R[dest] = LS[R[right]] Active 100100100
vload R[dest] = Immediate Value Active 110101
ldix R[dest] = INDEX Active 100100000
endwhere Enable All Cells (set Active every-

where)
100011111

wherecry Load Carry Flag into Active 100011100
whereeq Load Equal Flag into Active 100011101
wherelt Load Less Flag into Active 100011110
mult Initiate R[left] * R[right] 100001000 Add Lt Eq
multlo R[dest] = Low half of multiplication

result
Active 100101000

multhi R[dest] = High half of multiplica-
tion result

Active 100111000

cellshr Shift Register = R[left] then shift
right by R[right] positions

100010001 Sub Lt Eq

cellshl Shift Register = R[left] then shift
left by R[right] positions

100010010 Sub Lt Eq

ldsh R[dest] = Shift Register Active 100110000
add R[dest] = R[left] + R[right] Active 101000100 Add Lt Eq
sub R[dest] = R[left] - R[right] Active 101010100 Sub Lt Eq
addc R[dest] = R[left] + R[right] + Carry Active 101100100 Addc Ult Eq
subc R[dest] = R[left] - R[right] - Carry Active 101110100 Subc Ult Eq
eq R[dest] = (R[left] == R[right]) ?

1:0
Active 101001000 Add Lt Eq

ult R[dest] = (R[left] <R[right]) ? 1:0
(unsigned)

Active 101101000 Addc Ult Eq

lt R[dest] = (R[left] <R[right]) ? 1:0 Active 101011000 Sub Lt Eq
shl R[dest] = R[left] <<R[right] Active 101000000 Add Lt Eq
ishl R[dest] = R[left] <<right Active 101000001 U U U
shr R[dest] = R[left] >>R[right] Active 101010000 Sub Lt Eq
ishr R[dest] = R[left] >>right Active 101010001 U U U
shra R[dest] = R[left] >>>R[right] Active 101100000 Addc Ult Eq
ishra R[dest] = R[left] >>>right Active 101100001 U U U
popcount R[dest] = Sum of bits of R[left] Active 101110000
not R[dest] = ∼R[left] Active 101001100 U U U
or R[dest] = R[left] — R[right] Active 101011100 Sub Lt Eq
and R[dest] = R[left] & R[right] Active 101101100 Addc Ult Eq
xor R[dest] = R[left] ˆR[right] Active 101111100 Subc Ult Eq

Table 7: Vector Instructions

8

Category Opincaa Connex Instructions
arithmetic R(d) = R(s1) + R(s2); // add

R(d) = R(s1) - R(s2); // sub

R(d) = R(s1) + R(s2) + carry; // addc

R(d) = R(s1) - R(s2) + carry; // subc

R(s1) * R(s2); // mult, initialize multiplication

R(dl) = MULT LOW() and
R(dh) = MULT HIGH()

/* multlo and multhi, get 16-bit lower and

higher part of result of multiplication */

sum-reduce REDUCE(R(s)); // red, result has 32 bits

bitwise R(d) = ~ R(s); // not

logical R(d) = R(s1) | R(s2); // or

R(d) = R(s1) & R(s2); // and

R(d) = R(s1) ˆ R(s2); // xor

R(d) = R(s1) << R(s2); // shl

R(d) = R(s1) << imm; // ishl

R(d) = R(s1) >> R(s2); // shr

R(d) = R(s1) >> imm; // ishr

R(d) = SHRA(R(s1), R(s2)); // shra

R(d) = ISHRA(R(s), imm); // ishra

R(d) = POPCNT(R(s)); // popcount, bits sum

logical R(d) = R(s1) == R(s2); // eq

R(d) = R(s1) < R(s2); // lt

R(d) = ULT(R(s1), R(s2)); // ult

shift vector /* load in shift register vector R(s1),

then shift left/right by R(s2) positions */

CELL SHL(R(s1), R(s2)); // cellshl

CELL SHR(R(s1), R(s2)); // cellshr

/* load in R(d) the current value of

the shift register */

R(d) = SHIFT REG; // ldsh

load/store R(d) = LS[imm]; // iread, imm.-addr. load

R(d) = LS[R(s)]; // read, indirect load

LS[imm] = R(s); // iwrite, imm.-addr. store

LS[R(s)] = R(s); // write, indirect store

R(d) = INDEX; // ldix, load index of each lane

R(d) = imm; // vload, load immediate

predication EXECUTE IN ALL(...); // endwhere

EXECUTE WHERE EQ(...); // whereeq

EXECUTE WHERE LT(...); // wherelt

EXECUTE WHERE CRY(...); // wherecry

loop with REPEAT(imm); // setlc, imm ∈ {0..1023}

counter END REPEAT; // ijmpnzdec

NOP; // nop

Table 8: The Connex ISA described in Opincaa Connex, with C++ syntax. R(d)
is an arbitrary destination register, R(s1) is the first source register for a binary op-
erator (d, s1, s2 ∈ {0..31}); imm is the immediate constant operand with imm ∈
{−32768..32767}, unless otherwise specified.

9

