Connex Accelerator
Instruction Set Architecture Specification

October 21, 2018

Contents

1 Instruction Formats
1.1 Opcode Formats

2 Instructions
2.1 Scalar Instructions
2.2 Vector Instructions

3 Similitude Connex ISA, LLVM IR (and Opincaa ASM)

1 Instruction Formats

The Connex accelerator utilizes a 32-bit Instruction Set Architecture (ISA). Instructions
are divided into Scalar Instructions (SI) and Vector Instructions (VI). There are two main
instruction formats, shown in Table 1. Register addresses are 5 bits in size, allowing for
a maximum of 32 registers (SIMD or Scalar). The immediate value is 16 bits in size,
requiring the removal of the right operand address and the use of a reduced opcode for
immediate value instructions. The immediate value, when present, replaces the right
operand in both the scalar and vector pipelines.

Instruction T Bit Offset

SUHCHON YPE TTR196 [25:23] 22:5 | 1410 | 95 | 40
{/rgﬁzgdlate OPCODE IMMEDIATE VALUE LEFT | DEST
Non OPCODE RESERVED | RIGHT | LEFT | DEST
Immediate

Table 1: Instruction Formats

1.1 Opcode Formats

The Connex opcode is 6 or 9 bits in length and is always present on the most-significant
bits of the instruction. The opcode consists of a 3-bit fixed section and a 6-bit variable
section which is formatted differently depending on the contents of the fixed section.
The PIPE bit is always present at offset 8 and specifies whether the instruction is vector
(PIPE=1) or scalar (PIPE=0). The IMM bit is always present at offset 7 and specifies
whether the instruction is Immediate-Value (IMM=1) or Non-Immediate (IMM=0). The
ALU bit is always present at offset 6 and specifies whether the instruction utilizes ALU
(ALU=1) or other processing resources (ALU=0). When ALU is set the instruction
always writes back results to the register file.

Opcode formats for Vector Instructions are listed in Table 2. The WB bit is present
if ALU is not set and specifies if the instruction writes back results to the register file
(WB=1) or does not write back (WB=0). The NON-ALU SEL field specifies which
processing resource is targeted by the instruction. Table 3 shows the resources selected
by the values of NON-ALU SEL. When IMM is set, bit 0 of NON-ALU SEL is set. This
enables access of Immediate-Value instructions only to the Local Store and Immediate
Value instruction field.

The NON-ALU SEL field specifies which processing resource is targeted by the in-
struction. Table 3 shows the resources selected by the values of NON-ALU SEL. When
IMM is set, bit 0 of NON-ALU SEL is set. This enables access of Immediate-Value
instructions only to the Local Store and Immediate Value instruction field.

The OP field is present if ALU is set and specifies which type of operation is selected
inside the ALU. Table 4 shows available operation types. When IMM is set, bit 0 of
OP is set. This enables access of Immediate Value instructions only to Arithmetic and
Logical operations

The SUB-OP field selects the particular operation to be executed within an operation
type. Table 5 shows how SUB-OP values correspond to ALU operations.

Bit Offset
8 7 6 5 | 4] 3 [2]1] 0
PIPE | IMM | ALU
0 [WB]| NON-ALU-SEL
1 0 1 SUB.OP ‘ OP MODIFIERS
{ 0 | WB [NON-ALU-SEL[2:1] | 1
1 SUB-OP \ OP[1] 1
Table 2: VI Opcode Formats
NON-ALU SEL Value Accessed Resource
000 Index Read
100 Inter-Cell Shift
001 Local Store Read
101 Local Store Write
010 Multiply Read
110 Extension Register Read
011 Immediate Value Read
111 Cell Enable
Table 3: NON-ALU SEL Values
OP Value | Operation Type
00 Shift /Popcount
01 Arithmetic
10 Comparison
11 Logical
Table 4: OP Values
SUB-OP) SUB-OP)
Op Type Value Operation Op Type Value Operation
00 Left Shift Logical 00 Equal
Shift 01 Right Shift Logical Comparison 01 Signed Less
Popcount 10 Right Shift Arithmetic P 10 Unsigned Less
11 Popcount 11 Reserved
00 Sum 00 Logical Not
. . 01 Difference . 01 Logical Or
Arithmetic 10 Sum with Carry Logical 10 Logical And
11 Difference with Carry 11 Logical Xor

Table 5: SUB-OP Values

2 Instructions

2.1 Scalar Instructions

Scalar instructions (SI) follow the same formats as vector instructions. The PIPE bit is

not set for scalar instructions. Scalar instructions affect two scalar registers:

e LLC loop counter, specifies how many times a subsequent jump will execute

e PC program counter, indicates where instructions are fetched from, in the current
instruction stream

Table 6 lists the scalar instructions and their behaviour.

Mnemonic | Description Opcode
nop No operation 000000000
setle LC = Immediate Value 10101
ijmpnzdec | Require: Immediate Value <1023 10011

If (LC !=0): PC = PC — ImmediateV alue

LC=LC-1

If(LC ==0):PC =PC+1

LC reverts to initial value

Table 6: Scalar Instructions

2.2 Vector Instructions

Table 7 presents all vector instructions. Some instructions execute conditionally upon the
value of the Active flag, i.e., if Active is not set, they behave as nop. Certain instructions
set the carry, less and equal flags:

e the carry flag is set by:

— add, when R]left]+R|[right] overflows,
— addc, when R]left|+R[right|+carry overflows,
— sub, when R]left]-R[right] underflows,
— subc, when Rfleft]-R]right]-carry underflows,

e the less flag is set by It when Rfleft] is less than R[right],
e the equal flag is set by eq when Rleft] is equal to R|right],

In the table, referring to flags, a U entry indicates undefined (data dependent) values
of flags after the execution of the instruction. Where no value is indicated, the instruction
does not modify flags. Otherwise, the instruction may behave, with regard to a particular
flag, in an identical way to add, addc, sub, subc, It, or eq.

Notes:

e Memory instructions write, iwrite and read (except iread) require the insertion
of a delay slot of one cycle between them and the instruction(s) that generate their
operands. Following are all relevant examples we can have with delay slots:

R1 = R2 + R3
NOP // or other instruction to fill the delay slot
R4 = LS[R1] / LS[R1] = R4 / LS[R10] = R1 / LS[5] = R1

e [t is necessary to insert a delay slot of one cycle between selection instructions
(wherexx) and the instruction which affects the flag utilized for selection. For
example:

R1 = (R2 == R3)

NOP // Alex: or other instruction that does not
// alter Equal flag to fill the delay slot

WHERE_EQUAL

When all or some of the cells are disabled, reduction operations with operands from
the local store (code example: R1 = LS[15] then immediately REDUCE(R1)) return
an undefined result. The programmer must ensure that all cells are re-enabled, by
issuing an endwhere instruction, before any such reduction occurs.

At power-up, Active is zero (i.e., the cell’s register file and local store will be
disabled) until an endwhere instruction is received.

There is no explicit MOV (move instruction), but the programmer can move data
from one register to the other in several ways:

— ishl RO, R1, 0 (produces undefined flags)

— ishr RO, R1, 0 (produces undefined flags)

— ishra RO, R1, 0 (produces undefined flags)

— or RO, R1, R1 (recommended, produces constant flags: Carry = 0 Less = 0

Equal = 1)
— and RO, R1, R1 (recommended, produces constant flags: Carry = 0 Less = 0
Equal = 1)

Regarding the functionality:

The shift vector unit seems to contain 2 architecturally non-visible vector registers,
which are actually continuously operated by the unit: a 1st register with values
to be moved around and a 2nd register with movement directions, which should
have only non-negative values. The cell-shift instructions take as input 2 (vector)
register operands, which are copied, respectively, in the architecturally non-visible
registers of the shift vector unit. These instructions take normally several cycles
to finish (i.e., the shift vector unit to converge, to obtain a ”steady-state” result).
The ldsh instruction retrieves the result from the shift vector unit.

The cellshl instruction decreases in each cycle by at most 1 unit each value of the
2nd register if not zero, until all the values of the 2nd register become zero.

During each cycle of execution of cellshl, each element of the 1st register is copied
from the immediate/neighbor right cell, (modulo number of lanes, i.e., it considers
the register to be wrapped around) if the corresponding element of the 2nd register
is not zero (we look for zero at the current element, not in the neighbor right cell),
in which case this latter value is also decremented. Due to the modulo operation,
the cell-shift instruction experiences also a rotate effect.

Example of execution of the instruction cellshl R0, R1, where RO = [34 5 6], R1 =
[0 12 2] (we assume the number of lanes of Connex is 4):

Before cycle 1:
1st reg: 4
1

6 // the data is loaded in the 1st register
2nd reg: 2

345
012 // the move directions are loaded in the 2nd register

End of cycle 1:

1st reg: 356 3

2nd reg: 0011
End of cycle 2:

1st reg: 3 5 3 3

2nd reg: 0000

Key takeaways: cellshl puts values to the left, while cellshr puts values to the
right. The number of cycles to execute these operations can be considered equal to
the maximum value of the 2nd vector operand.

3 Similitude Connex ISA, LLVM IR (and Opincaa
ASM)

The Connex Instruction Set Architecture (ISA) is presented in Table 8. The Connex
Instruction Set Architecture (ISA) contains arithmetic, bitwise logical, logical, memory
access and nop instructions. It also has sum-reduce (red, in Opincaa represented by RE-
DUCE), shift vector (cellshl/r, which moves the data in the vector and 1dsh, which reads
the shift vector), block predication instructions (whereeq/1t /cry and endwhere, which
have in Opincaa corresponding instructions starting with EXECUTE) and loop with
counter instructions (setlc and ijmpnzdec, in Opincaa represented by REPEAT (imm)
and END_REPEAT). A complete description of the ISA is given in [3] and [1]. As we
can see, Connex has rather limited control flow instructions: only loops of constant trip
counts and a predication mechanism using the Boolean values of the Carry, Less or Equal
flags, set previously for each lane. It does not have instructions such as call or condi-
tional branch, available, for example, in NVIDIA GPU’s PTX assembly [5]. While the
lack of branches implies there is no control divergence, the Connex predicated blocks can
be arbitrarily large and the inherent inefficiency of having threads executing conditional
code on a SIMD processor remains.

As already discussed, all instructions take 1 cycle, except the sum reduction, which
takes loga(CV L) cycles, and the shift vector operations, which take at the maximum
CV L cycles under normal conditions.

We note that the red Connex instruction performs sum reduction over a vector of 16-
bit unsigned elements, which is required for the efficient implementation of reduction for
32-bit (or 64, etc) integer element vectors - for example, we can send from the CPU to the
standard Connex with 128 (16-bit) lanes a vector of 64 32-bit integers for reduction, which
fills a vector line of the accelerator. We should also have a red Connex instruction for
vectors of 16-bit signed elements. Similarly, the multiplication is performed on unsigned
16-bit integer vector operands in order to allow the efficient multiplication of 32-bit
(or larger) signed integers. An interesting property is that the lowest 16 bits of the
32-bit result, returned by the multlo instruction, is the same for signed and unsigned
multiplication, so we should normally add to the Connex ISA only a multhi for 16-bit
signed integer input operands.

The LLVM IR vector instructions were first described in [2]. They have little predi-
cation support: only the vector load and store, gather and scatter are masked.

The LLVM language is in most aspects more higher level than the Connex assembly
language, which we target to compile to. LLVM has arithmetic, bitwise logical and logical
instructions that work on scalar and also vector operands. LLVM'’s select instruction can
be translated to Connex using its where and arithmetic operations. The shufflievector
and eztractelement LLVM instructions with arbitrary arguments are rather difficult to
translate efficiently to Connex. On the other hand, Connex’s vload instruction can be
represented in LLVM IR with an insertelement followed by a shufflevector. Also, the
LLVM IR masked gather and scatter intrinsics have an equivalent in the read and write
Connex instructions.

Opincaa is an everything (decomposition, mapping, communication and synchroniza-
tion) explicit parallel programming model [6]. Opincaa is similar to OpenCL [4], only
that it targets just the Connex accelerator and writes kernels for it in vector assembly
language instead of OpenCL C.

References

[1] C. Bira, L. Petrica, and R. Hobincu. OPINCAA: A Lightweight and Flexible Programming
Environment For Parallel SIMD Accelerators. Romanian Journal of Information Science
and Technology, 16(4), 2013.

[2] R. L. Bocchino, Jr. and V. S. Adve. Vector LLVA: A Virtual Vector Instruction Set for
Media Processing. In Proceedings of the 2nd International Conference on Virtual Execution
Environments, VEE 06, pages 46-56, New York, NY, USA, 2006. ACM.

[3] Gheorghe M. Stefan. The Connex Instruction Set Architecture, 2015.

[4] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg. OpenCL Programming
Guide. Addison-Wesley Professional, 1st edition, 2011.

[5] D. A. Patterson and J. L. Hennessy. Computer Organization and Design, Fifth Edition:
The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2013.

[6] D. B. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Comput.
Surv., 30(2):123-169, June 1998.

Mnemonic | Description Condition | Opcode glaar ;y ;T:Z 1]:31(;1?1
nop No operation 000000000
red Launch reduction with Rleft] 100000000
iwrite LS[Immediate Value] = R]left] Active 110010
iread R[dest] = LS[Immediate Value] Active 110100
write LS[R|[right]] = R[left] Active 100010100 | Sub | Lt Eq
read R[dest] = LS[R]right]] Active 100100100
vload R[dest] = Immediate Value Active 110101
1dix R[dest] = INDEX Active 100100000
endwhere | Enable All Cells (set Active every- 100011111
where)
wherecry | Load Carry Flag into Active 100011100
whereeq Load Equal Flag into Active 100011101
wherelt Load Less Flag into Active 100011110
mult Initiate R[left] * R]right] 100001000 | Add | Lt | Eq
multlo R[dest] = Low half of multiplication | Active 100101000
result
multhi R[dest] = High half of multiplica- | Active 100111000
tion result
cellshr Shift Register = R]left] then shift 100010001 | Sub | Lt Eq
right by R[right] positions
cellshl Shift Register = Rlleft] then shift 100010010 | Sub | Lt Eq
left by R[right] positions
ldsh R[dest] = Shift Register Active 100110000
add R[dest] = R[left] + R[right] Active 101000100 | Add | Lt Eq
sub R[dest] = R[left] - R[right] Active 101010100 | Sub | Lt Eq
addc R[dest] = R[left] + R[right] + Carry | Active 101100100 | Addc | Ult | Eq
subc R[dest] = R[left] - R[right] - Carry | Active 101110100 | Subc | Ult | Eq
eq R[dest] = (R[left] == R]right]) ? | Active 101001000 | Add | Lt Eq
1:0
ult R[dest] = (R[left] <R[right]) 7 1:0 | Active 101101000 | Addc | Ult | Eq
(unsigned)
It R[dest] = (R[left] <R[right]) ? 1:0 | Active 101011000 | Sub | Lt Eq
shl R[dest] = Rleft] <<R[right] Active | 101000000 | Add | Lt | Eq
ishl R[dest] = Rfleft] <<right Active 101000001 | U U U
shr R[dest] = R[left] >>R][right] Active 101010000 | Sub | Lt Eq
ishr R[dest] = Rf[left] >>right Active 101010001 | U U U
shra R[dest] = Rfleft] >>>R][right] Active 101100000 | Addc | Ult | Eq
ishra R[dest] = Rfleft] >>>right Active 101100001 | U U U
popcount | Rldest] = Sum of bits of R[left] Active 101110000
not R[dest] = ~R[left] Active 101001100 | U U U
or R[dest] = R[left] — R[right] Active 101011100 | Sub | Lt Eq
and R[dest] = R[left] & R|[right] Active 101101100 | Addc | Ult | Eq
XOT R[dest] = R[left] "R]right] Active 101111100 | Subc | Ult | Eq

Table 7: Vector Instructions

Category Opincaa Connex Instructions

arithmetic R(d) = R(sl) + R(s2); // ada
R(d) = R(sl) - R(s2); // sub

R(d) = R(sl) + R(s2) + carry; // addc

R(d) = R(sl) - R(s2) + carry; // subc

R(s1l) * R(s2); // mult, initialize multiplication
R(d;) = MULT_LOW() and

R(d,) = MULT_HIGH()

/* multlo and multhi, get 16-bit lower and

higher part of result of multiplication */
sum-reduce REDUCE(R()) // red, result has 32 bits
bitwise R(d) = ~ R(8); // not
logical R(d) = R(s1) | R(s2); //or
R(d) = R(s1) & R(s2); // and
R(d) = R(s1) " R(s2); // xor
R(d) = R(sl) << R(s2); // sh1
R(d R(sl) << imm; // ishl
) = R(s1)
1)

) =
R(d) = R(s1) >> R(s2); // shr
(d) (>> 1mm // ishr

R(d) = SHRA(R(s1), R(s2)); // shra
R() ISHRA((),) // ishra
R(d) = POPCNT(R(s)); // popcount, bits sum

logical R(d) = R(sl) == R(s2); // eq
R(d) = R(s1) < R(s2); // 1
R(d) = ULT(R(s1), R(s2)); // ult
shift vector /* load in shift register vector R(sl),
then shift left/right by R(s2) positions */
CELL_SHL(R(s1), R(s2)); // celishl
CELL_SHR(R(s1), R(s2)); // celishr

/* load in R(d) the current value of

the shift register */

R(d) = SHIFT_REG; // 1ash
load/store R(d) = LS[lmm} // iread, imm.-addr. load
R(d) = LS[R()] // read, indirect load
LS[IHIHI] = R(), // iwrite, imm.-addr. store
LS[R(s)] = R(8); // write, indirect store
R(d) = INDEX; // 1dix, load index of each lane
R(d) = imm; // vioad, load immediate

predication EXECUTE,IN,ALL(>, // endwhere
EXECUTE WHERE_EQ(...); // whereeq
EXECUTE WHERE_LT(...); // wherelt

EXECUTE_-WHERE_CRY(...); // wherecry

loop with REPEAT (imm); // setle, imm € {0..1023}
counter END_REPEAT; // ijmpnzdec

NOP; // nop

Table 8: The Connex ISA described in Opincaa Connex, with C++ syntax. R(d)
is an arbitrary destination register, R(sl) is the first source register for a binary op-
erator (d,sl,s2 € {0..31}); ¢émm is the immediate constant operand with imm &
{—32768..32767}, unless otherwise speciﬁed9

