
Hybrid Adaptive Clock Management for FPGA
Processor Acceleration

Alexandru Gheolbănoiu, Lucian Petrică
University POLITEHNICA of Bucharest, Romania
{alexandru.gheolbanoiu, lucian.petrica}@arh.pub.ro

Sorin Coţofană
Delft University of Technology, The Netherlands

s.d.cotofana@tudelft.nl

Abstract—As FPGAs speed, power efficiency, and logic capac-
ity are increasing, so does the number of applications which make
use of FPGA processors. However, due to placement and routing
constraints, FPGA processors instruction delay balancing is a
real challenge, especially when the implementation approaches
the FPGA resource capacity. Consequently, even though some
instructions can operate at high frequencies, the slow instructions
determine the processor clock period, resulting in the underutil-
isation of the processor potential. However, the fast instructions
latent performance may be harnessed through Adaptive Clock
Management (ACM), i.e., by dynamically adapting the clock fre-
quency such that each instruction gets sufficient time for correct
completion. Up to date, ACM augmented FPGA processors have
been proposed based on Clock Multiplexing (CM), but they suffer
from long clock switching delays, which could nullify most of
the ACM potential performance gain. This paper proposes an
effective FPGA tailored clock manipulation approach able to
leverage the ACM potential. We first evaluate Clock Stretching
(CS), i.e., the temporary clock period augmentation, as a CM
alternative in FPGA processor designs and introduce an FPGA
specific CS circuit implementation. Subsequently, we evaluate the
advantages and drawbacks of the two techniques and propose a
Hybrid ACM, which monitors the processor instruction stream
and determines the optimal adaptive clocking strategy in order to
provide the maximum speedup for the executing program. Given
that CS has very low latency at the expense of limited accuracy
and dynamic range we rely on it when the program requires
frequent clock period changes. Otherwise we utilise CM, which is
rather slow but enables the FPGA processor operation at the edge
of its hardware capabilities. We evaluate our proposal on a vector
processor mapped on a Xilinx Zynq FPGA. Our experiments
indicate that on Sum of Squared Differences algorithm, Neural
network, and FIR filter execution traces the hybrid ACM provides
up to 14% performance increase over the CM based ACM.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have evolved
from their initial role in digital circuit prototyping and are
now often utilized as hardware coprocessors for low-power and
relatively high-performance heterogeneous computing systems
in, e.g., video processing, cryptography, or network packet
inspection. In such a heterogeneous system, an FPGA is placed
alongside a General-Purpose Processor (GPP) and implements
specialized hardware which offloads GPP computation. FPGA-
augmented heterogeneous systems are potentially orders of
magnitude faster and more energy-efficient than GPP-only sys-
tems, as demonstrated by their utilization in supercomputing
applications [1] and recently in Internet search engines [2].

In the coprocessor role, the FPGA may implement a fixed-
function or a programmable circuit, i.e., a soft processor, in

which case it executes instructions, some of which may be
highly optimized for the heterogeneous system target appli-
cation. Programmability is a desirable system attribute as it
confers flexibility and a measure of future-proofing, but is
costly, in terms of area and power consumption, and may
have detrimental consequences on the maximum achievable
operating frequency. For this reason, most FPGA coprocessors
have been fixed-function, but as FPGA capacity and perfor-
mance increases, soft processor based solutions are becoming
more common, as evidenced by the multitude of soft processor
designs which have been proposed in the scientific literature
[3], [4] as well as by FPGA vendors [5], [6].

Although FPGAs have some advantages over Application-
Specific Integrated Circuits (ASICs) with regard to flexibility,
lower development costs and shorter time to market, the FPGA
processor performance is not only lower than the one of
equivalent ASIC circuit in terms of achievable top operating
frequency, but it is also more difficult to control and estimate
at design-time [7].

FPGA logic is implemented in look-up tables (LUTs),
which communicate with each-other through a flexible but
relatively slow interconnect. While logic delays through LUTs
are easily estimated because LUT timing characteristics are
known at design time, routing delays depend on the relative
placement of interconnected LUTs and the interconnect con-
gestion, which are both unknown before the place and route
is not completed. Distant interconnected LUTs increase route
delays, while congestion along some interconnect segments
may cause route delays to increase further, as some signals
have to be diverted along less crowded but more distant
segments. As a result, path delays are naturally less balanced
in FPGAs than in ASICs. One usual solution is to force path
balancing during placement and routing, which try to make
slow paths faster at the expense of making fast one slower.

An alternative to path balancing is to utilize Adaptive
Clock Management (ACM), which is a method to dynamically
leverage the unbalanced circuits latent performance available
in FPGA processor systems. In pipelined processors, some
pipeline stages consist of circuits which are utilized by all in-
structions, e.g, instruction decode, while others consist of mul-
tiple instruction-specific circuits, each of them being utilized
by one or a limited set of instructions, e.g, the execute stage(s).
Traditionally, the processor clock period must be equal to the
delay of the slowest combinational circuit in the processor,
i.e., the critical path. In unbalanced circuits, the critical path
may reside in instruction-specific circuitry supporting rarely
executed instructions, while the other instruction-specific logic



has much lower delay than the clock period. This induces a
suboptimal utilization of the processor potential performance
as most of the time the processor could operate at a higher
frequency than the one determined by the critical path analysis.
We note that this situation is not FPGA-specific, but the
difficulty of path delay balancing in FPGA makes it more
severe for FPGA processors than for ASIC counterparts.

The main concept behind ACM is that the effective mini-
mum period of the processor clock may be calculated in each
cycle by taking into account only the delay of the instruction-
specific circuits utilized by the instructions currently occupying
each pipeline stage. The processor performance is maximized
if the clock signal is manipulated such that its period always
equals the calculated effective minimum period. ACM has been
previously implemented for FPGA vector processors in the
form of Clock Multiplexing (CM), i.e., by selecting between
multiple clock sources according to the values obtained by
inspecting the instruction stream. While CM based ACM is ca-
pable of delivering speedup, when compared to the traditional
instruction delay balancing technique, long clock switching
delays significantly diminish the performance gains for some
benchmarks.

In this paper we propose and evaluate a novel hybrid
FPGA tailored ACM framework. First we propose and evaluate
a FPGA tailored Clock Stretching (CS) implementation and
compare its potential performance in terms of accuracy, dy-
namic range, and latency with the ones of the CM counterpart.
Our evaluations indicate that (i) CM has good accuracy and
large clock frequency dynamic range but it is rather slow,
while (ii) CS has limited dynamic range but exhibit a low
frequency switching latency. Based on these we subsequently
propose a hybrid ACM which combines the CS and CM
advantages, while simultaneously hiding their drawbacks, by
monitoring the processor instruction stream and determining
which adaptive clock management strategy is optimal at any
given time. We evaluate the effectiveness of the proposed
ACM solution by simulating the execution of the Sum of
Square Differences (SSD) algorithm, a neural network solver,
and a FIR filter implemented on an ACM-augmented vector
processor mapped on a Zynq FPGA. Our evaluations indicate
that the proposed hybrid ACM enables an up to 14% execution
time decrease when compared with clock multiplexing ACM.
Moreover the hybrid ACM implementation requires only 52
LUTs and 6 global clock buffers, and dissipates 100 mW
while the CM ACM implementation only requires a single
clock buffer.

The rest of this paper is structured as follows. Section II
describes Adaptive Clock Management, Clock Stretching, and
Clock Multiplexing, and lists relevant related work. In Section
III we construct theoretical performance models for Clock
Stretching and Multiplexing based ACM, with the purpose
of guiding the FPGA implementations of CS based ACM. In
Section IV we present an efficient implementation of Clock
Stretching for FPGAs, which we further utilize to implement
a hybrid adaptive clock manager which is evaluated in Section
V against previous work and real-world use-cases. Section VI
presents concluding remarks.

Fig. 1. Example of Unbalanced Pipeline Delays

Fig. 2. ACM Enabled Processor

II. ADAPTIVE CLOCK MANAGEMENT

Consider an unbalanced 5-stage pipeline processor. As
indicated in Figure 1 in decode, read, and write-back stages
all instructions share the same logic and therefore the specific
pipeline stage delay is not instruction-specific. However, in
the execute stages each instruction has separate dedicated
logic, each with its own delay. In Figure 1, green, yellow,
and red denote circuits with low, medium, and high delay,
respectively, while Dij represents the longest delay of the
pipeline stage Si when executing the instruction Ij . In pipeline
stages where the logic is shared by all instructions, Dij is the
same for all j therefore the delay of the pipeline stage is simply
denoted by Di. The minimum clock period is determined by
Tmin = max(Dij), which is evidently suboptimal because
most of the logic in the processor is capable of operating at a
higher frequency.

ACM targets the manipulation of the processor clock signal
such that its period always matches the delays of the instruc-
tions currently occupying each of the processor pipeline stages.
For example, if instructions I3 and I5 occupy the pipeline
stages S3 and S4, respectively, the effective minimum clock
period is TACM

min = max(D33, D45), whereas if instructions I1
and I2 occupy the same pipeline stages, the effective minimum
clock period is TACM

min = max(D31, D42).

Figure 2 exemplifies the use of Adaptive Clock Manage-
ment within a processor system. Each and every clock cycle
the processor fetch unit examines the instruction stream and
computes and communicates the desired period to the Adaptive
Clock Manager (ACM), which modifies the clock signal as
requested. The processor fetch and execution units as well as
the ACM itself utilize the same ACM generated clock. An
external ACM initialization block may be required in order
to configure the ACM parameters during circuit start-up, or
to reconfigure them during circuit operation for, e.g., power
management purposes.



Adaptive clock management has been previously proposed
for both ASIC and FPGA circuits. The authors of [8] propose
ACM as a work-around for critical paths caused by the
long routes to embedded FPGA multipliers, in the context
of FPGA vector processing. The proposed solution is based
on multiplexing between a slow clock and a fast one. The
vector processor communicates whether the instruction in the
execution stage is a multiplication, in which case the slow
clock is selected, otherwise the fast clock is selected. An up
to 28% performance improvement is reported but the long
delays associated with clock sources switching between result
in slow-down for some benchmarks. The authors apply instruc-
tion reordering compilation techniques in order to reduce the
number of clock switches and therefore minimize the clock
switching penalties but the effectiveness of this approach is
limited by data-dependencies.

The authors of [9] propose an ASIC tailored Clock Stretch-
ing (CS) mechanism capable of extending the clock period
by 25% when slow paths are in use, enabling the circuit
operation at increased average clock speed. The proposed
adaptive solution requires a specialized Flip-Flop element, to
be utilized along critical paths, and a dedicated circuit which
generates the stretchable clock signal from four identical-
frequency clocks spaced at 90 degree phase intervals. A
10% performance increase is claimed at a 10% critical path
activation probability. An analysis of adder architectures in
the context of adaptive CS is performed in [10], and the
authors identify adder architectures which benefit most from
the adaptive clocking technique. Adaptive CS has also been
proposed by the same authors as a work-around for slow paths
caused by manufacturing process variability [11].

In [12] a clock shifting technique is proposed whereby
several phase-shifted clocks are distributed and selected at each
Flip-Flop in the FPGA fabric, artificially creating clock skew,
which extends the effective clock period for a selected path,
at the expense of another path which must have its period
reduced in order to absorb the clock skew difference. The
authors evaluate their proposal on several benchmark circuits
and report close to 25% maximum speed-up. However the
technique has limited applicability as in most practical cases
there is not enough available slack to absorb the extra time
awarded to the slow path.

III. CS VS CM: THEORETICAL PERFORMANCE

To identify the key design parameters of a Clock Stretching
FPGA implementation capable to out-perform a Clock Mul-
tiplexing counterpart we perform a performance theoretical
analysis of Clock Multiplexing and Clock Stretching ACM
enabled processors as presented in previous work.

The FPGA Clock Multiplexing implementation [8] makes
use of the clock multiplexing buffers available in the Xilinx
7-Series architecture, called BUFGCTRL [13]. These clock
multiplexers provides glitch-free multiplexing between two
clock sources as depicted in Figure 3. If a change in clock
selection is signalled though the select input S, BUFGCTRL
waits for the first negative clock edge on the currently selected
input, then a negative edge of the desired input, then switches
the output to the desired input, after a clock switching delay
TSW .

Fig. 3. FPGA Clock Multiplexer

To model the time required by an CM based ACM-
enabled processor to execute an instruction stream we first
divide the processor instructions into two classes: slow and
fast instructions, of latencies TS and TF , respectively. Let
us assume that the instruction stream consists of NSI slow
instructions and NFI fast instructions intermixed such that
NSW clock switches are required for the correct instruction
execution. Xilinx FPGA documentation only defines the upper
bound for TSW , and as it is not constant, we utilize its average
value T avg

SW in the subsequent analysis. The CM execution time
TCM is defined in Equation (1) as the sum of instruction
latencies and average clock switch times.

TCM = NFITF +NSITS + T avg
SWNSW (1)

In the case of the Clock Stretching (CS) based ACM in [9],
a reference clock period TR may be on demand extended by
exactly 25%. In our particular execution performance model,
we distinguish two CS use cases. If TS is less than 1.25 ∗
TF , then CS may be utilized with TF as the reference clock
period. Otherwise, the reference clock period must be longer
than TF such that TS is equal to 1.25 ∗ TR. In both cases, the
exact values of both TS and TF cannot be generated. The CS
execution time TCS , defined in Equation (2), depends on the
achievable approximations for TS and TF , denoted as TCS

S
and TCS

F , respectively.

TCS = NFIT
CS
F +NSIT

CS
S (2)

The theoretical model suggests that CM approaches optimum
performance when NSW decreases, while CS approach main-
tains performance regardless of the NSW value and is expected
to perform better when clock switches are frequent.

The principal CS performance loss factor is the accuracy
of the TS and TF approximation. Only one can be matched
exactly. Assuming that slow instructions are rare, it is more
detrimental to performance if TF is approximated badly, and
less so for TS . Increasing the CS dynamic range beyond
1.25 ∗ TR would increase the probability of being able to
exactly match TF instead of TS when there is a large difference
between TF and TS . These conclusions help guide the develop-
ment of a FPGA implementation of the Clock Stretching ACM
in the following section. They also indicate the possibility that
despite the clock switching latency, Clock Multiplexing ACM
may in some cases be faster than Clock Stretching, because of
the approximation errors inherent in CS. Therefore, a hybrid
solution is desirable.

IV. FPGA TAILORED HYBRID ACM

Our aim is to provide an Adaptive Clock Manager (ACM)
implementable on modern FPGAs and able to operate in



Fig. 4. Clock Stretching ACM for NPC = 4

conjunction with any FPGA programmable processor, which
performance should not rely on code recompilation. This
constraint derives from the desire not to increase system
complexity, and also from the fact that data dependencies
prevent optimization on some applications, as demonstrated
in [8]. Furthermore, recompilation cannot be performed on pre-
compiled binaries, which is a common form of deliverable for
proprietary software.

A. FPGA Clock Stretching

We implement a Clock Stretching ACM by multiplexing
between NPC out of phase clock signals, PC1 to PCNPC

.
We call these Phased Clocks (PCs), and note that as much
as 7 PCs may be generated from a Mixed Mode Clock
Manager (MMCM) or phase locked loop (PLL) in the 7-
Series FPGA architecture. As opposed to clock multiplexing
between asynchronous clocks, BUFGCTRL-based multiplex-
ing between PCs results in a predictable switch time if the
source PC is ahead of the destination PC, i.e., the falling
edge of the destination PC arrives after the falling edge of the
source. In this implementation, TSW is always equal to the
phase delay between the source and destination PCs, resulting
in the controlled stretch of exactly one output period every
time the multiplexer selection input changes.

Figure 4 depicts a CS ACM, consisting of an MMCM
generating the required PCs and a 4-input clock multiplexer
with control logic. The DRP and PS ports are utilized to
configure the MMCM with the required PC frequencies and
phase relationships. Equation (3b) captures the relationship
between the output clock period and the selection input, where
DPC(x, y) is a function which returns the phase delay of
PCy relative to PCx, and SM is the value of the multiplexer
selection input.

SI , SM ∈ [0, NPC) (3a)
TO(t) = TPC +DPC(SM (t− 1), SM (t− 2)) (3b)

TO(t) = TPC +
TPC

NPC
SI(t− 1) (3c)

If the phase difference between PCs is constant and equal
to TPC/NPC , the CS ACM can generate at its output a
continuous train of stretched clock periods by incrementing the
multiplexer selection in each output period. This is achieved
by adding an accumulator to the control path, such that the

Fig. 5. Hybrid Adaptive Clock Manager

user controls the rate of selection change, and therefore the
period of the output clock, through the SI input. In this
mode, the ACM performs the function of an NPC-to-1 clock
multiplexer without the drawback of the switch time. Equation
(3c) expresses the relationship between the period of the output
clock and the value of the SI input of the ACM.

The proposed Clock Stretching implementation has in-
creased dynamic range when compared with previous work,
as the output period can be as much as (2− 1/NPC) ∗ TPC .
Additionally, multiple stretch levels can be achieved, in steps
of (1/NPC) ∗ TPC . These combined properties increase the
CS approximation accuracy. Theoretically, the clock stretching
ACM may be extended to any number of internal PCs, thereby
increasing the output frequency precision arbitrarily. However,
beyond 4 PCs, restrictions in the routing between the FPGA
fabric BUFGCTRLs do not permit the construction of a
balanced multiplexer tree and in an unbalanced multiplexer,
some PC inputs pass through more buffers and are delayed in
relation to the others, breaking the required phase relationships
between PCs. This delay may be compensated for by adjusting
the PC phase, but the small expected increase in output
frequency precision does not justify the system complexity
increase, therefore we decided not follow this avenue any
further.

B. Hybrid Adaptive Clock Manager

For applications which extract more performance from
Multiplexing than Stretching, the CS ACM is extended with
a hybrid mode, whereby the MMCM is configured to provide
an additional clock output COTS of arbitrary period which is
connected to an additional input of the clock multiplexer. In
this configuration, Multiplexing or Stretching may be utilized,
according to a decision by the ACM control logic. In order
to make a decision, the control logic takes as inputs the
design time determined timing parameters TS , TF , TCS

F ,
TCS
S , and TSW , and monitors a history of 100 instructions in

order to estimate the NSW , NSI , and NFI parameters of the
executing program. Those parameters are utilized to estimate
the execution times corresponding to both ACM strategies
utilizing Equations (1) and (2) in order to chose the most
appropriate clock manipulation strategy.

Figure 5 presents the implementation of a hybrid ACM in
a 4-PC configuration. A 6-input multiplexer has been utilized,



Fig. 6. BUFGCTRL Multiplexer Switching Time

in order to provide four balanced clock routes for the PCs,
on inputs 1, 2, 5, and 6. The clock COTS may be connected
to either of the middle inputs and the remaining multiplexer
input is unconnected. No delay compensation is required for
COTS because it has no phase relationship requirement to
other multiplexer inputs.

V. EVALUATION

In this section we evaluate the proposed adaptive clocking
methodology with regard to performance, resource utilization,
and power dissipation.

A. Average Clock Switching Time

Given that the BUFGCTRL documentation only gives an
upper bound on the clock switch time, in order to accurately
predict the performance of the Clock Switching and Clock
Multiplexing strategies in a hybrid framework, we evaluate
the actual clock switch times by means of simulations. The
experimental methodology is as follows: Two clock signals of
period TF and TS , initial TS value is 1% larger than TF , are
generated and connected to the inputs of a BUFGCTRL clock
multiplexing buffer. The BUFGCTRL is switched between
the two clocks 1000 times, each time waiting for a random
number of clocks, between 1 and 10, before performing the
next switch. The duration of the entire simulation is measured
and the clock switching overhead is computed. Subsequently,
TS is increased by another 1% of TF and the evaluation is
repeated. The evaluation results are presented in Figure 6 when
one can observe that the average clock switch time increases
with TS , as expected.

B. Execution Performance

In order to establish the relative performance increase
when compared with previous work on clock multiplexing,
we evaluate the proposed methodology against the timing
parameters of the Vector Processor (VP) in [8] utilizing
instruction traces of the Sum of Squared Differences (SSD)
algorithm in several variants, as well as a Neural Network
(NN) algorithm, and a FIR filter. Part of the NN algorithm the
VP performs the dot product between the vector of perceptron
inputs and the vector of weights. Both SSD and NN are heavily
utilized in computer vision [14], while FIR is essential to many

Fig. 7. SSD Performance versus Tile Size

signal processing applications, therefore we can consider this
algorithm mix representative of an expected real-world vector
processor workload.

The targeted VP executes all instructions in a single clock
cycle. Multiplication is performed through two instructions,
one initiates the multiplication and the other one copies the
result into the destination register. On a Zynq FPGA VP
mapping both multiplication related instructions have a latency
of 8.5 ns (TS), while all the other VP instructions have a
latency of 6.25 ns (TF ). From these parameters we determine
that in Clock Stretching mode the best approximation for TS is
achieved for a 50% stretch of TF , resulting in TC

S S of 9.375
ns. From Figure 6 we are also able to identify the value of
T avg
SW as approximately 3.5 ns and we utilize these values to

configure the proposed hybrid ACM.

We obtained SSD execution traces for the selected algo-
rithms from the authors of [8] and utilized them to evaluate the
execution time for the CS and CM strategies in ISim, a Xilinx
FPGA simulation environment. We exercised multiple variants
of SSD execution traces, with and without loop tiling [15] and
tile sizes up to 30 with increments of 5. Increasing the tile
size reduces the number of clock switches but maintains the
total number of instructions and the instruction mix, therefore
evaluating several tiled versions of SSD isolates the effect of
NSW on the ACM system performance. Figure 7 presents the
results of the SSD evaluation for Clock Multiplexing (CM)
and Clock Stretching (CS) strategies for tile sizes 0 to 15.
The CM execution time decreases when the tile size increase,
converging toward the theoretical optimum derived from the
circuit timing parameters. The CS execution time remains
constant as expected, and is less than the CM execution time up
to a tile size of 5. We also observe in the Figure that the Hybrid
ACM correctly detects the algorithm characteristics and selects
the most favorable technique for each SSD tiling variant. The
measured SSD results perfectly correspond to the CM and CS
strategies predicted performance, given the VP characteristics
and the SSD algorithm.

Table I summarizes the performance results for all algo-
rithms, listing the best speedup achieved by the Hybrid ACM
strategy when compared with the CM ACM. For SSD, the best
speedup is achieved on the untiled SSD benchmark, where
the CS utilization improves performance by approximately
11%. The NN dot-product based algorithm benefits 14% from



TABLE I. CS AND CM PERFORMANCE

Algorithm SSD Untiled SSD Tile 30 NN FIR

TCM [ms] 1.28 1.10 3.65 12.75

Thybrid [ms] 1.13 1.10 3.13 12.07

Speedup 1.11 1 1.14 1.05

TABLE II. ACM IMPLEMENTATION CHARACTERISTICS

ACM Type CM CS Hybrid

LUT 0 5 52

Flip-Flop 0 3 33

DSP 0 0 3

BUFGCTRL 1 4 6

Fmax [MHz] 500+ 350 350

Power Overhead [mW] 0 100 100

the hybrid approach, while FIR experiences only a small 5%
decrease of execution time compared to Clock Multiplexing.
The hybrid ACM never performs worse than the CM ACM
because it is able to detect those cases where multiplexing is
the best strategy, such as on the tiled SSD benchmark, where
there is no speedup.

C. Resource Utilization, Maximum Frequency, and Power Dis-
sipation

The ACM resource utilization is presented in Table II.
The CM ACM requires a single BUFGCTRL, while the CS
ACM and the Hybrid ACM require 4 and 6 BUFGCTRLs,
respectively. Typical Xilinx 7-Series FPGAs have 32 or more
BUFGCTRLs, therefore we can consider this utilization ac-
ceptable. The Hybrid ACM requires the most logic resources.
Of the total hybrid ACM resources, the decision block takes
up to 45 LUTs, 33 flip-flops, and 3 DSPs, and can operate at
a maximum frequency of 350 MHz. If higher frequencies are
required, system designers may opt to utilize an CM based
ACM. Both the CS ACM and Hybrid ACM top operating
frequency is fundamentally limited in by the routing between
the control logic and the BUFGCTRLs. The power dissipation
was estimated by Xilinx Power Analyzer from the ACM
synthesized netlists along with the simulation activity files.
Both CS ACM and Hybrid ACM dissipate 100mW of power,
mostly due to the MMCM, while for CM ACM, which requires
a single BUFGCTRL that has to be utilized anyway for clock
buffering, we can consider that it induces zero power overhead.

VI. CONCLUSIONS

In this paper we proposed a hybrid technique for FPGA
processors Adaptive Clock Management (ACM) meant to
harness the latent processor performance in situations where
FPGA congestion or lack of embedded resources causes unbal-
anced paths result in reduced overall operating frequency. We
built upon previous work on Clock Stretching (CS) for ASIC
circuits and Clock Multiplexing (CM) for FPGA processors.
We presented an CS FPGA tailored efficient implementation
by utilizing clock multiplexer components already available in
the Xilinx 7-Series FPGA architecture. We evaluated the CS
performance and demonstrated that when compared with CM
it exhibits lower latency. Our analysis also identified two CS
drawbacks, namely low accuracy and reduced dynamic range,
which makes CS ACM suboptimal for certain applications.

We therefore proposed and evaluated a Hybrid ACM relying
on a combination of CS and CM methods. Our Hybrid ACM
monitors the processor instruction stream and decides which
technique is the most effective given the characteristics of the
executing program. We evaluated the Hybrid ACM on traces
of the Sum of Squared Differences, Neural Network, and FIR
filter algorithms executed on a vector processor mapped on a
Xilinx Zynq FPGA and demonstrated a performance increase
of up to 14% when compared to CM ACM. The Hybrid ACM
technique does not require any compile-time optimizations,
consumes only 52 LUTs, one FPGA clock generation block
(MMCM), and 6 FPGA clock multiplexers, and dissipates an
additional 100 mW of power, mainly due to the MMCM).
Note that if an MMCM is already utilized for FPGA frequency
synthesis it can be also utilized by the Hybrid ACM, thus
avoiding any power penalty.

ACKNOWLEDGMENT

The work has been funded in part by the Sectoral Op-
erational Programme Human Resources Development 2007-
2013 of the Romanian Ministry of European Funds through
the Financial Agreement POSDRU/159/1.5/S/132397.

REFERENCES

[1] M. Awad, “FPGA supercomputing platforms: a survey,” in International
Conference on Field Programmable Logic and Applications. IEEE,
2009, pp. 564–568.

[2] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers et al., “A reconfigurable
fabric for accelerating large-scale datacenter services,” in International
Symposium on Computer Architecture. IEEE, 2014, pp. 13–24.

[3] R. Lysecky and F. Vahid, “A study of the speedups and competitive-
ness of FPGA soft processor cores using dynamic hardware/software
partitioning,” in Proceedings of Design, Automation and Test in Europe.
IEEE, 2005, pp. 18–23.

[4] H. Y. Cheah, S. A. Fahmy, D. L. Maskell, and C. Kulkarni, “A lean
FPGA soft processor built using a DSP block,” in Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate
Arrays. ACM, 2012, pp. 237–240.

[5] “Xilinx MicroBlaze,” www.xilinx.com/tools/microblaze.htm, 2014.
[6] “Altera Nios-II,” www.altera.com/devices/processor/nios2, 2014.
[7] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, Feb 2007.

[8] L. Petrica, V. Codreanu, and S. Cotofana, “VASILE: A reconfigurable
vector architecture for instruction level frequency scaling,” in Faible
Tension Faible Consommation, June 2013, pp. 104–107.

[9] K. Chae, S. Mukhopadhyay, C.-H. Lee, and J. Laskar, “A dynamic
timing control technique utilizing time borrowing and clock stretching,”
in Custom Integrated Circuits Conference, Sept 2010, pp. 1–4.

[10] S. Ghosh and K. Roy, “Exploring high-speed low-power hybrid arith-
metic units at scaled supply and adaptive clock-stretching,” in Design
Automation Conference, 2008, pp. 635–640.

[11] S. Ghosh, P. Ndai, S. Bhunia, and K. Roy, “Tolerance to small delay
defects by adaptive clock stretching,” in International On-Line Testing
Symposium, 2007, pp. 244–252.

[12] D. P. Singh and S. D. Brown, “Constrained clock shifting for field
programmable gate arrays,” in Proceedings of the ACM/SIGDA Tenth
International Symposium on Field-programmable Gate Arrays. ACM,
2002, pp. 121–126.

[13] “Xilinx 7-series clocking resources,” http://www.xilinx.com/support/
documentation/user guides/ug472 7Series Clocking.pdf, 2014.

[14] C.-h. Chen, L.-F. Pau, and P. S.-p. Wang, Handbook of pattern recog-
nition and computer vision. World Scientific, 2010.

[15] J. Xue, Loop tiling for parallelism. Springer, 2000.


