VASILE: A Reconfigurable Vector Architecture for
Instruction Level Frequency Scaling

Lucian Petrica
Politehnica University of Bucharest
Bucharest, Romania
Email: lucian.petrica@arh.pub.ro

Abstract—Coarse-grained dynamic frequency scaling has been
extensively utilised in embedded (multiprocessor) platforms to
achieve energy reduction and by implication to extend the
autonomy and battery lifetime. In this paper we propose to make
use of fine-grained frequency scaling, i.e., adjust the frequency
at instruction level, to increase the instruction throughput of
a FPGA implemented Vector Processor (VP). We introduce a
VP architectural template and an associated design methodology
that enables the creation of application requirements tailored VP
instances. For each instance, the data-path delays of individual
instructions are optimized separately, guided by profiling data
corresponding to the target application class, maximizing the
performance of frequently utilised instructions to the detriment
of those which are less often executed. In this way instructions are
divided into clock frequency classes according to their data-path
delay and at run time the clock frequency is scaled to the value
required by the class of the to be executed instruction. During
the application execution different VP instances are dynamically
configured in FPGA in order to create the most appropriate
hardware support for optimizing the application performance
in terms of throughput without increasing power consumption,
and therefore reducing energy. As operating frequency changes
induce a certain time penalty, which may potentially diminish
the actual performance gain, the application code is optimised
during the compilation in order to reduce the number of run-
time clock switches via, e.g., loop tiling, instruction clustering. We
evaluate the effectiveness of the proposed approach on several
computational kernels used in image processing applications,
i.e.,, sum of absolute differences, sum of squared differences,
and Gaussian filtering. Our results indicate that an average
instruction throughput increase of 20%, and a 15% energy
consumption reduction are achieved due to the utilisation of run-
time reconfiguration and fine-grained frequency scaling.

I. INTRODUCTION

Vector processors (VPs) belong to the Single Instruction
Multiple Data (SIMD) class of parallel computers in Flynn’s
taxonomy [1]. A typical VP consists of an array of Processing
Elements (PEs) and a central control unit, which fetches and
dispatches instructions and data to PEs. VPs are well suited to
applications which involve dense linear algebra, e.g., computer
vision [2]. Two of the most important computational kernels
in computer vision today are: (i) convolution, which operates
on large arrays of pixel data, and (ii) similarity search that
is heavily utilized in object recognition and relies on the
computation of distance norms between large vectors. As the
importance of computer vision applications increases, it is of
interest to also increase the VP speed and reduce their energy
consumption.

Valeriu Codreanu
University of Groningen
Groningen, The Netherlands
Email: v.b.codreanu@rug.nl

Sorin Cotofana
Delft University of Technology
Delft, The Netherlands
Email: s.d.cotofana@tudelft.nl

Vector processing applications benefit from a large PE
number [3] and, when implemented in FPGA technology,
the VP design goal is to fit as many PEs, operating at the
highest attainable clock frequency, into the available FPGA
device. However, the non-uniform on-die distribution of FPGA
embedded multipliers and memory blocks [4] implies that
not all PEs can be placed in the vicinity of the embedded
resources they utilize. The long signal routes required to reach
these resources make it difficult to balance the slack of paths
through arithmetic circuitry. Since the maximum operating
frequency is given by the longest signal delay, one long route
may ultimately cost many MHz top speed lost. This issue
can be mitigated by means of multi-cycle paths or route
pipelining, but such an approach is device-specific and results
in Instruction Set Architecture (ISA) modifications, which are
limiting the design portability and require code recompilation.

In this paper we introduce VASILE (VEctor Architecture
for Scaling at Instruction LEvel), a vector processor architec-
ture designed to overcome the limitations of FPGA routing
delays under high logic congestion. It makes use of fine-
grained frequency scaling to dynamically adapt the clock
frequency to the delay of the currently executed instruction.
In this way, instructions always execute at the fastest clock
speed permitted by the signal delay through their associ-
ated data-path. As a matter of fact, fine-grained frequency
scaling mimics asynchronous operation but without suffering
from asynchronous design traditional problems. Following
the principle of making the common case the fastest, we
also introduce a hardware-software co-design methodology,
whereby the synthesis tool optimisation effort is focused on the
most commonly executed instruction data-paths, resulting in a
VP implementation optimised for the target application. Con-
versely, at compile time, the application is optimized through
loop unrolling, loop tiling, and instruction reordering in order
to create clusters of instructions of the same class, which
maximizes the performance gain by reducing the number of
required clock frequency switches.

To evaluate the effectiveness of the proposed approach, we
optimised VASILE VPs for the Sum of Absolute Differences
(SAD), Sum of Squared Differences (SSD), and Gaussian con-
volution. We implemented the VPs on the Zedboard [5] Zynq
7020 development platform and evaluated the performance and
energy effectiveness of our implementations on the mentioned
algorithms, as well as on an image processing workload which
makes use of them. Our results indicate that on average we
achieve a 20% performance increase, with as much as 38%

Main Instruction Fetch Host
Memory and Dispatch Processor

[PED PEL|PEZ2|PE3| |PE N]

Data Input-Output

Fig. 1. Vector Processor Organization.

performance increase for the Sum of Absolute Differences
algorithm. The performance improvement allows for a quicker
workload execution, which enables the use of aggressive power
management techniques, i.e., clock and power gating, reducing
the energy consumption by 15% overall.

The rest of the paper is structured as follows. Section
II provides background information on FPGA vector proces-
sor architectures. Section III introduces the VASILE vector
architecture and design methodology. Section IV presents a
VASILE implementation and its performance evaluations on an
object recognition workflow, while Section V provides some
concluding remarks.

II. FPGA VECTOR PROCESSORS

Vector Processors (VPs) are an established research area
[6] and have the potential to provide significant speedup for
multimedia applications when compared to scalar processors
[7]. Figure 1 presents a typical VP structure, as implemented
in the Connex Array [7]. A central fetch unit reads instructions
from main memory and dispatches them to all PEs simultane-
ously. This removes the need for control logic in the PE itself,
which only contains logic related to the actual computation,
i.e., register file, arithmetic, local memory. Data are transferred
to the PEs through an Input-Output (I0) controller, which has
Direct Memory Access (DMA) capability and is programmed
by the host processor.

Recently there has been interest in FPGA implemented
vector coprocessors. The VENICE processor [8] provides
vector extensions to an FPGA soft processor, claiming up to
30% performance increase when compared to an Intel Core2
processor, for matrix multiplication applications. Work on the
VESPA [9] processor suggests that application performance
scales with the number of vector lanes, making it advantageous
to always provide the maximum number of vector lanes, which
fit into the target FPGA device. However, the clock speed loss
caused by FPGA architecture and congestion is not discussed.

The Xilinx [4] and Altera [10] FPGA fabric architectures
consist of alternating columns of logic, memory, and embedded
multipliers. FPGA parts vary in the number of columns, the
particular mix of columns, and their placement relative to
each-other. Figure 2 illustrates the layout of the Zynq FPGA
silicon die, extracted from the Xilinx PlanAhead software. The
device presented in the figure is the mid-range Zynq 7020. The
maximum distance between embedded multiplier columns is
roughly half the length of the die, which means that signal
routes from a logic element may travel up to a quarter of the die
length to reach a multiplier. Memory columns are placed closer
together, consequently the maximum route length from a logic
element to a memory element is about 15% of the die length.

Zyng PS
ARM Cortex

Fig. 2. Zynq Die Floorplan.

I o

Register A
File o
P

Instruction
Units

Flags B
L

Fig. 3. VASILE Processing Element Organization.

For small designs, the FPGA synthesis tool can place the logic
close to the required multipliers and memories. However, when
a design approaches the FPGA maximum capacity, some of the
logic cannot be placed close to these resources, which leads
to performance degradation. The following section introduces
an architectural solution to this problem.

III. VASILE

VASILE (VEctor Architecture for Scaling at Instruction
LEvel) is a vector processor architecture designed to overcome
the limitations of FPGA routing delays under high logic
congestion. To this end, VASILE segregates instructions based
on the nature of their FPGA based implementation, in order to
better control data-path delays. The VASILE PE organization
is presented in Figure 3. The PE core logic consists of register
file, operand registers, forwarding logic, and a write-back
multiplexer. The outputs of the operand registers are distributed
to all Instruction Units (IUs), and the IU results are connected
to the core logic for write-back. Each IU corresponds to a
class of instructions, which utilizes the same FPGA embedded
resource(s). Table I lists all VASILE instruction classes along
with the FPGA resources they utilize. Algebra instructions, like
sum or difference, logic operations and logical shifts are per-
formed in FPGA logic, i.e., LUTs. Multiplication and related
operations, like multiply-accumulate, are implemented using
embedded multipliers. Loads and stores require access to the
embedded memory, while inter-PE communication instructions
utilize the FPGA routing network to pass signals from one PE
to the other. Inter-PE wires can vary in length, depending on
the interconnect topology and logic placement in the FPGA.

VASILE’s core assumption is that delay through the IUs

TABLE 1. INSTRUCTION CLASSES

FPGA Resource
Logic (LUTs)
Embedded Multiplier
Embedded RAM
Routing

Instruction Class [[

Algebra
Multiplication

Memory

Communication

may differ significantly. To exploit this feature, the architecture
includes a Frequency Selection Unit (FSU), which comprises
several clock sources, a clock multiplexer, and associated logic.
Each clock source corresponds to one or more instruction
classes. During the decode phase, the FSU inspects the in-
struction stream for clock switch instructions and selects the
desired clock source. A configurable delay line ensures that
the decoded instructions do not reach the PEs before the clock
multiplexer has switched to the proper source for the respective
instruction. The switch time is device-dependent and may
require a relatively lengthy period of time to complete. At the
software platform level, the VASILE architecture relies on a
specialized compiler, which tiles loops and clusters instructions
together into blocks belonging to the same instruction class,
in order to minimise the number of required clock switches.
The block size depends on the application nature and the PE
register file size.

The processor architecture is complemented by a spe-
cialised design methodology for both the VASILE hardware
and the software application running on top of it. The imple-
mentation starts with the design of the software application. An
initial profiling step identifies the most common instructions.
The IUs of the most common instructions are optimised for
reduced delay. An instruction performance profile is generated
from the IU achieved delays and the clock switch time is
calculated for each possible frequency transition. This timing
information is used by the code compiler to properly cluster the
code and insert clock switch instructions. The compiler may
choose not to switch the clock if the switch does not result in
performance increase. An FSU configuration, which includes
the number and frequency of the clock sources, is generated
from the final code.

We note that the application-driven nature of the design
methodology may yield poor results when the target appli-
cation comprises several computational kernels with different
characteristics. In such a situation, optimising for one kernel
may result in poor performance for the other. To handle this
situation, two or more VP instances are created and time-
multiplexed into FPGA fabric at run-time, if the gain in
performance is sufficient to offset the reconfiguration time,
which is device-dependent.

IV. PERFORMANCE EVALUATION

Experimental evaluations of the proposed technique were
performed on the Xilinx Zynq 7020 heterogeneous processing
platform, presented in Figure 2. The Programmable System
(PS) consists of a dual-core ARM Cortex-A9 CPU, a DDR
memory controller, and several peripheral controllers. The
Programmable Logic (PL) consists of FPGA fabric. The PL
and PS are powered independently to allow for PL power gat-
ing. The ARM processors support several low-power modes,

procedure SSD(N, M)

end for
: end procedure

1:

2 fori=1— N do

3 for j =1— M do

4 R[1] = LSJi]

5: R[2] = LS[N + j]
6: R[3] = R[1] - R[]
7 R[3] = R[3] x R[3]
8 REDUCE R[3]
9 end for

0

1

Fig. 4. The SSD Algorithm.

1: procedure SSD(N, M)

2 for:=1— N do

3 for j =1 — M/30 do

4: R[O} = LS[Z]

5: for k=0 — 29 do

6: R[1+ k] = LS[N +30*j + k]
7 end for

8: for k=0 — 29 do

9: R[1+ k] = R[1 + k] — RJ0]

10: end for

11: for k=0 — 29 do

12: R[1+ k] =R[1+ k]« R[1+ k]
13: end for

14: for k=0 — 29 do

15: REDUCE RJ[1 + k|

16: end for

17: end for

18: end for

19: end procedure

Fig. 5. The Tiled SSD Algorithm.

including deep sleep mode, which gates the clock to most PS
peripherals and interconnects [11].

We selected three computer vision algorithms: SSD, SAD,
and Gaussian convolution, and added an object recognition
workload based on Scale-Invariant Feature Transform (SIFT)
keypoint matching [12], [13] in order to integrate the three
algorithms into a real-world scenario. The vector processor is
responsible for performing (i) the SIFT Gaussian convolution
algorithm on high-definition images, and (ii) SIFT descriptors
SAD based matching against a known objects database con-
taining 10.000 SIFT keypoints. The recognition workload is
repeated every second, and the system goes into low-power
mode between recognition events. SIFT typically extracts
between 100 and 2000 keypoints from an image, depending
on object clutter and other factors.

Clock switching was implemented through the use of the
BUFGMUX_CTRL primitive. The clock switch occurs within
a precisely defined time period, expressed in Equation 1. T}
and T, are the periods of the two involved clock signals,
and the switching time is at most three slow clock periods,
depending on their phase alignment.

Tswiten < 3 * ma:c(Tl, TQ) €))

TABLE II. IU BASELINE AND MAXIMUM FREQUENCIES
Instruction Class H Fpasecline IMhz] | Farar [Mhz] | Density [%]
Algebra 125 163 53

Multiplication 125 117 33
Memory 125 160 11
Communication 125 160 3
TABLE III. INSTRUCTION TILING AND CLOCK SWITCHING
Algorithm H Tile Size | Loop Clock Switches | Speedup
SAD - 0 1.28
SSD 30 2 1.10
Convolution 10 4 0.90

We manually applied the design methodology outlined in
Section III, using Xilinx ISE 14.2 software tools, and were able
to fit 128 PEs into the target FPGA device. Table II presents the
maximum frequencies attainable for the instruction classes, and
the average class density in the target applications. As the table
indicates, only the multiplication class differs significantly
in performance, which is expected given the large distances
between multiplier columns on the target device. Because of
the small difference in top frequency for the Algebra, Memory
and Communication classes, we re-partitioned the instructions
into two classes only, i.e., Multiply, with a top frequency of
117 MHz, and Non-Multiply with a top frequency of 160 MHz.

We also manually performed tiling optimisations where
required, as illustrated in Figure 5 for SSD. The SSD inner
loop is restructured into several loops, which are then unrolled
to form batches of 30 consecutive identical instructions. The
tiling optimisations results are presented in Table III, along
with speedup figures versus the baseline frequency of 125 Mhz.
Outer loops have been preserved, and the table shows how
many clock frequency switches are required to execute each
iteration of the outer loop. SAD does not require any clock
switch because it does not utilize multiplication instructions,
therefore tiling was not performed. Convolution does not
benefit from the clock switching because the maximum tile size
is smaller and data dependencies require the clock to switch
too often.

Power dissipation was calculated by the Xilinx Power
Analyzer from the final FPGA netlist, and we assumed that
power gating infrastructure exists off-chip, to enable PL power
gating. Table IV lists estimated power dissipation and energy
consumption for the object recognition workload in three
scenarios: (i) baseline implementation, (ii) Clock Switching
(CS) implementation, and (iii) Reconfigurable Clock Switching
(RCS), whereby convolution is performed on the balanced
implementation and keypoint matching on the clock switching
implementation. Both the CS and RCS scenarios provide better
instruction throughput and lower energy consumption than the
baseline, with RCS being marginally better.

V. CONCLUSION

We have presented VASILE, a vector processor architec-
ture designed for pseudo-asynchronous operation in order to
overcome some of the limitations in modern FPGAs. The
proposed architecture segregates instructions with similar delay
into classes and frequency is scaled according the delay of

TABLE IV. OBJECT RECOGNITION PERFORMANCE

Implementation [[Baseline [cs [RCs
Teonvolution [Ms] 180 198 180
Tmatching [ms] 560 437 437
Tiotar [ms] 740 635 617
FPGA Power [mW] 600 636 636
Zynq Power [mW] 1620 1656 1656
Energy Consumption [mJ] 1199 1053 1021
Speedup 1 1.16 1.20

Relative Energy 1 0.88 0.85

the executed instruction. In this manner, instructions execute
at the rate permitted by their datapath delay, much like
asynchronous circuits. An associated design methodology was
introduced to guide the optimisation effort towards the most
commonly utilised instructions, to the detriment of those less
common. A code compilation strategy was also introduced,
which utilises loop tiling and instruction clustering to form in-
struction batches, in order to minimise the number of frequency
changes and the corresponding time penalty. Experimental
evaluations on a Xilinx Zynq 7020 device demonstrate that
the proposed architecture provides up to 28% performance
increase for image processing workloads. The performance
increase enables the device to spend more time in low-power
modes, thereby also results in a 15% energy consumption
reduction.

REFERENCES

[1] M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. 100, no. 9, pp. 948-960, 1972.

[2] D. Kim, K. Kim, J.-Y. Kim, S. Lee, and H.-J. Yoo, “An 81.6 GOPS
object recognition processor based on NoC and visual image processing
memory,” in Custom Integrated Circuits Conference. 1EEE, 2007, pp.
443-446.

[3] P. Yiannacouras, J. G. Steffan, and J. Rose, “Fine-grain performance
scaling of soft vector processors,” in International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES),
Grenoble, France, October 2009.

[4] (2003, December) The Xilinx ASMBL architecture. [Online]. Available:
http://www.xilinx.com/company/press/kits/asmbl/asmbl_arch_pres.pdf

[5] (2013, April) Zedboard development platform. [Online]. Available:
http://www.zedboard.org

[6] K. Asanovic, “Vector microprocessors,” Ph.D. dissertation, University
of California, 1998.

[71 G. Stefan, “The CA1024: A massively parallel processor for cost-
effective HDTV,” in Spring Processor Forum: Power-Efficient Design,
2006, pp. 15-17.

[8] A. Severance and G. Lemieux, “VENICE: A compact vector pro-
cessor for FPGA applications,” in International Conference on Field-
Programmable Technology. 1EEE, 2012, pp. 261-268.

[9] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: Portable, scalable,
and flexible FPGA-based vector processors,” in International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems
(CASES), Atlanta, USA, October 2008.

[10] (2005, July) The Altera Stratix architecture. [Online]. Available:
http://www.altera.com/literature/hb/stx/ch_2_vol_1.pdf

[11] (2013, March) Xilinx zynq technical reference manual. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/user_guides/ug585-
Zyng-7000-TRM.pdf

[12] L. Shapiro and G. C. Stockman, Computer Vision. 2001. Prentice Hall,
2001.

[13] D. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

